Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report

PDF Version Also Available for Download.

Description

Numerical simulation on the flow patterns/the velocity profiles was conducted and predicted. The test conditions and input boundary conditions are summarized. The flow patterns of the side view/top view are predicted along with stream lines. When the flow reached to the secondary air input of the lower air injection nozzles, the flow pattern was changed from a laminar flow to a turbulent flow. The velocity profiles at various locations of the combustor chamber was predicted. The velocity at the center of the combustor is greater than that of the wall region. The velocity of the top section is also greater ... continued below

Physical Description

17 p.

Creation Information

Lee, S.W. January 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Numerical simulation on the flow patterns/the velocity profiles was conducted and predicted. The test conditions and input boundary conditions are summarized. The flow patterns of the side view/top view are predicted along with stream lines. When the flow reached to the secondary air input of the lower air injection nozzles, the flow pattern was changed from a laminar flow to a turbulent flow. The velocity profiles at various locations of the combustor chamber was predicted. The velocity at the center of the combustor is greater than that of the wall region. The velocity of the top section is also greater than that of the lower section. The swirling velocity is reduced in both directions of the wall and the center of the combustor chamber. The velocity increased from the wall region to the center region at the top section of the secondary air injectors. Numerical modeling/simulation will be continued to determine the species profiles, temperature profiles, mass fraction profiles, and heat flux and heat transfer coefficient profiles. In addition, experimental test on the hot combustor model will be conducted and analyzed to compare with the numerical simulation results.

Physical Description

17 p.

Notes

OSTI as DE98058157

Source

  • Other Information: PBD: Jan 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98058157
  • Report No.: DOE/MT/93006--12
  • Grant Number: FG22-93MT93006
  • DOI: 10.2172/663432 | External Link
  • Office of Scientific & Technical Information Report Number: 663432
  • Archival Resource Key: ark:/67531/metadc708718

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 10, 2015, 7:56 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, S.W. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report, report, January 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc708718/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.