RETAINING LATCH FOR A WATER PIT GATE

Inventors: Arden R. Beale
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
RETNAINING LATCH FOR A WATER PIT GATE

BACKGROUND OF THE INVENTION

1. Field Of The Invention

The present invention relates to retaining devices which are used to latch two elements or parts together and, more particularly, to gate latches for use in locking a gate to a wall bracket in a water pit utilized to store or handle hazardous materials.

2. The Prior Art

Storage facilities for hazardous materials may include a water pit which is divided into sections. Removable stainless steel gates are provided to separate adjacent sections of the water pit when draining of a particular section is desired. The gates typically have a pneumatic bladder attached to the edge of the gate and this bladder is inflated to provide a water-tight seal between the gate and the gate frame. It is important that each gate be capable of being latched in place with a retaining mechanism that will provide adequate force to retain the position of the gate against the upward force created by the bladder.

A typical water pit gate and the prior art retaining mechanism are shown in Figure 1. A gate 10 is shown positioned within a gate frame 12 which is formed in the walls 14 of a water pit 16. A pneumatic bladder 13 is attached within the outer channel of gate 10 and is
inflated by compressed air provided through air line 18 such that
bladder 13 forms a water-tight seal between gate 10 and gate frame 12.
As bladder 13 is inflated, it urges gate 10 upwardly out of gate frame 12.
With this system, a crossbar 20 is provided at each end of gate 10
to retain gate 10 in position within gate frame 12 and each crossbar 20
is held in place by positioning it within brackets 22 which are attached
to the walls 14 on each side of gate frame 12. Bladder 13 is most
effective when the gate rises only a limited amount, preferably 1/8 inch
or less. To accomplish this the prior art system provides a shim or
wedge 24 which is positioned between crossbar 20 and the top of gate 10
to adjust and limit the allowable rise or play in gate 10. To remove
gate 10 from the water pit, bladder 13 is deflated, shim 24 is dislodged
and crossbars 20 are removed from brackets 22.

While this prior art retaining system is functional, it suffers
from a number of drawbacks. First, the prior art system has several
loose parts which may become lost or may fall into the water pit.
Second, the prior art system is difficult and time consuming to install
and to remove. And third, because of the various shim sizes that are
required, it is difficult to interchange gates for use in different gate
frames. One other significant drawback of the prior art system is that
the placement of brackets 22 interferes with a new monorail transfer
system (not shown) which traverses water pit 16 adjacent to wall 14 of
the water pit.
SUMMARY OF THE INVENTION

In accordance with the present invention, a retaining latch is provided which overcomes the drawbacks of the prior art system described above. The retaining latch has no loose parts and only one moving part which may readily be adjusted by a single person using a common handheld tool, such as a wrench. Further, the retaining latch of the present invention requires no brackets or other parts to be attached to the walls of the water pit and, therefore, the mechanism does not interfere with the new monorail transfer system mentioned above. This is important to minimize loss of water should an emergency situation occur.

The retaining latch of the present invention comprises a latch plate, having an edge of varying thickness, which is rotatably mounted to the edge of a first part and a catch means formed in a second part for alternately engaging a portion of the edge of the latch plate when the latch plate is rotated. Thus, to retain a water pit gate in a gate frame, the retaining latch of the present invention provides a latch plate which is rotatably mounted to the end of the top of the gate, and a recessed opening is formed in the gate frame, adjacent to the latch plate, for engaging a portion of the edge of the latch plate.

In a preferred embodiment, the latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate is of progressively reduced thickness. While the edge of the latch plate may
gradually vary in thickness, thus forming a ramp or a cam, in a preferred embodiment, the edge varies in thickness in steps such that distinct and predetermined variations in play are obtained as the latch plate is rotated to engage the recessed opening.

Advantageously, a hex-nut is attached to the top of the latch plate to allow the latch plate to be turned by a wrench. Preferably, a central aperture or hole extends through the latch plate and the hex-nut and a bolt protrudes through the central hole and attaches to the gate below in order to rotatably attach the latch plate to the gate.

While the retaining latch of the present invention has been described with relation to retaining a water pit gate in a gate frame, the latch may be used where a simple, efficient, remotely operable locking device is needed for retaining purposes.

Other objects, features, and advantages of the present invention will be set forth in, or will become apparent from, the detailed description of the preferred embodiments of the invention which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is, as described above, a perspective view of a prior art retaining mechanism in use on a water pit gate.

Figure 2 is perspective view of a retaining latch constructed in accordance with a preferred embodiment of the present invention, in use on a water pit gate.
Figure 3 is an exploded perspective view of a portion of the retaining latch shown in Figure 2.

Figure 4 is a cross-sectional view of the latch plate and hex-nut of Figure 3 taken generally along line 4-4.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to Figures 2 to 4 of the drawings in which like numerals represent corresponding elements throughout the several views, Figure 2 shows a retaining latch in accordance with a preferred embodiment of the present invention in use on a gate 10 which is positioned within a gate frame 12. It will be understood that, in use, a second retaining latch (not shown) would typically be positioned on the other side of gate 10, similar to the manner in which the two retaining mechanisms are used in the prior art system shown in Figure 1. As shown in Figure 2, a hex-nut 30 is attached to a latch plate 32 and this assembly is rotatably attached to gate 10 with a hex-head cap bolt 34 and a thrust washer 36. In the position shown, a portion of latch plate 32 is positioned within a rectangular recessed opening 40 formed in gate frame 12.

An exploded view of latch plate 32, hex-nut 30, cap bolt 34 and thrust washer 36 is shown in Figure 3 and, in this view it is more clearly shown that latch plate 32 is D-shaped in profile, that is, latch plate 32 is generally circular but with one side of the profile flat or cut away. The upper surface of latch plate 32 is divided into four
sections, a first section 32a is the full thickness of latch plate 32 and the remaining three sections, 32b, 32c, and 32d are of progressively reduced thicknesses. The flat side of latch plate 32 (the side that appears to be cut away) is referenced as side 32e. Although Figure 3 is not to scale, in the embodiment shown, latch plate 32 is ten inches in diameter and one inch thick at section 32a, 7/8 inch thick at section 32b, 3/4 inch thick at section 32c, and 5/8 inch thick at section 32d.

An aperture or hole 32f (shown in Figure 4) is located through the center of latch plate 32. Hex-nut 30, which has center aperture or hole 30a having no internal threads, is welded to latch plate 32 such that center hole 30a aligns with hole 32f. Alternatively, attachment of hex-nut 30 to latch plate 32 may be made by any number of other suitable methods including screws, pins, welding and the like or made from one piece. Advantageously, a bushing 38 is inserted into center holes 30a and 32f to provide a more durable wear surface during use. A cap bolt 34, having a lower threaded portion 34a and an upper shoulder portion 34b is positioned through thrust washer 36 such that shoulder portion 34b projects through bushing 38 and threaded portion 34a screws into the top of gate 10.

Referring again to Figure 2, in use, latch plate 32 is rotated, using a wrench on hex-nut 30, such that a particular section of latch plate 32 is positioned within recessed opening 40 of gate frame 12 so that no more than 1/8 inch of play exists between gate 10 and gate frame 12 when the bladder is deflated. In the view shown, section 32a of latch plate 32 is positioned within recessed opening 40; however, with
particular gates and gate frames, only a thinner section of latch plate 32, e.g. section 32b, 32c or 32d, may fit within opening 40. To unlatch the retaining latch, latch plate 32 is rotated such that the flat side 32e faces opening 40, thereby effecting no connection or latching between opening 40 and latch plate 32.

In the preferred embodiment of the present invention described above, latch plate 32 rests directly on the top of gate 10. Advantageously, to allow greater adjustment in the height of the stepped sections 32a - 32d of latch plate 32, shims may be positioned between latch plate 32 and the top of gate 10, thus raising the height of latch plate 32 with respect to recessed opening 40. Further, bushing 38 may be threaded to allow height adjustment of latch plate 32. These two features make it possible to adjust the latches on individual gates to fit in various gate frames.

Although the invention has been described in detail with respect to preferred embodiments thereof, it will be apparent to those skilled in the art that variations and modifications can be effected in these embodiments without departing from the spirit and scope of the invention.
ABSTRACT OF THE DISCLOSURE

A retaining latch for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame.
10 gate
12 gate frame
13 A pneumatic bladder
14 walls of a water pit
16 floor of a water pit
18 air line
20 crossbar
22 brackets
24 shim or wedge
30 hex-nut
30a center aperture or hole of Hex-nut 30
32 latch plate
latch plate 32 is divided into four elevations: 32a, 32b, 32c, and 32d
32e flat side of latch plate 32
32f aperture or hole located through the center of latch plate 32
34 hex-head cap bolt
34a lower threaded portion 34a of cap bolt 34
34b an upper shoulder portion of cap bolt 34
36 thrust washer
38 bushing
40 rectangular recessed opening in element 12