Production of strontium sulfide coatings by metal organic chemical vapor deposition

PDF Version Also Available for Download.

Description

This work was focused on the MOCVD of the cerium-doped strontium sulfide (SrS:Ce) phosphor for use in thin film electroluminescent displays (TFELs). Following previous research on a small scale reactor, a feasibility scale-up using a commercially available reactor enlarged the size of the deposition area to a 4`` diameter wafer or a 2`` by 2`` glass slide. Films were deposited from the reaction of Sr(thd){sub 2}, Ce(thd){sub 4}, and H{sub 2}S at 450{degrees}C and 5 torr. This system employed a liquid delivery system for the accurate and repeatable delivery of the metal organic reagents. The deposition from this reactor was ... continued below

Physical Description

7 p.

Creation Information

Moss, T.S.; Dye, R.C. & Tuenge, R.T. November 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 74 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This work was focused on the MOCVD of the cerium-doped strontium sulfide (SrS:Ce) phosphor for use in thin film electroluminescent displays (TFELs). Following previous research on a small scale reactor, a feasibility scale-up using a commercially available reactor enlarged the size of the deposition area to a 4`` diameter wafer or a 2`` by 2`` glass slide. Films were deposited from the reaction of Sr(thd){sub 2}, Ce(thd){sub 4}, and H{sub 2}S at 450{degrees}C and 5 torr. This system employed a liquid delivery system for the accurate and repeatable delivery of the metal organic reagents. The deposition from this reactor was shown to be crystalline-as-deposited SrS with a (200) orientation, possibly a result of the thin nature of the coating and the involvement of (200) grains in the initial nucleation process. The wafers showed good uniformity, but had some thickness variation near the outer radius of the wafer resulting from the addition of H{sub 2}S from the outer edge. There were eighteen total deposition experiments, of which nine were characterized for EL performance. The highest brightness observed was 5 fL.. The samples were exceedingly thin as a result of the fifteen fold increase in the surface area between the deposition reactors. Increasing the sample thickness to 7,000{angstrom} or higher will dramatically increase the brightness of the emission.

Physical Description

7 p.

Notes

OSTI as DE99000704

Source

  • Spring meeting of the Materials Research Society, San Francisco, CA (United States), 13-17 Apr 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000704
  • Report No.: LA-UR--98-1974
  • Report No.: CONF-980405--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 670181
  • Archival Resource Key: ark:/67531/metadc708696

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 26, 2016, 3:29 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 74

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moss, T.S.; Dye, R.C. & Tuenge, R.T. Production of strontium sulfide coatings by metal organic chemical vapor deposition, article, November 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc708696/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.