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Solute in Electroosmotic Flow
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Llvermore, California 94551-0969

ABSTRACT

Analytical methods are employed to determine the axial dispersion of a neutral non-reacting solute in an
incompressible electroosmotic flow. In contrast to previous approaches, the dispersion is obtained here by
solving the time-dependent diffusion-advection equation in transformed spatial and temporal coordinates to
obtain the two-dimensional late-time concentration field. The coefficient of dispersion arises as a separation
eigenvalue, and its value is obtained as a necessary condition for satisfying all of the required boundary
conditions. Solutions based on the Debye-Huckel approximation are presented for both a circular tube and
a channel of infinite width. These results recover the welMuown solutions for dispersion in pressurdriven
flows when the Debye length is very large. In this limit, the axial dispersion is proportional to the square of
the Peclet number based on the characteristic transverse dimension of the tube or channel. In the tilt of
very small Debye lengths, we iind that the dispersion varies as the square of the Peclet number based on the
Debye length. Sirnpl~ approximations
Peclet number are also presented.

INTRODUCTION

to the coefficient of dispersion as a function of the Debye length and

Mkxochannel devices are finding increased use
in the separation, identification and synthesis of a
wide range of chemical and biological species. Em-
ploying transverse channel dmensions in the range
from a few microns to about one millimeter, such
systems may permit the miniaturization and large
scale integration of many chemical processes in a
manner analogous to that already achieved in microe-
lectronics. Applications for microchannel devices
now under development include such diverse pro-
cesses as DNA sequencing, immunoassay, the identi-
fication of explosives, identification of chemical and
biological warfare agents, and the synthesis of chem-
icals and drugs.

Electroosmotic flows [1,2] offer two important
benefits over pressur~driven flows for the small

are independent of the transverse dimension of the
tube or chzmnel over a wide rauge of conditions,
making this technique for driving fluid motion ex-
tensible to extremely small physical scales. In con-
trast, pressure-ch+ren flows require a pressure gra-
dient that increases inversely with the square of the
minimum transverse dimension to maintain a given
fluid speed. Second, the profile of the fluid veloc-
ity across a tube or channel is essentially flat, again
over a very wide range of conditions. All variations
in the axial velocity are confined to a small region,
comparable in thickness to the electric Debye layer,
adjacent to the tube or channel walls. The benefit
of this flat veloci~ profile is that samples may be
transported over long ranges with very little disper-
sion due to nonuniform fluid speeds.

physical dime&ions
devices. Fust, fluid

characteristic of microchannel To help understand hydrodynamic dispersion
speeds in electroosmotic flows in electroosmotic flow, we will consider the difEusive
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and advective transport of a neutral non-reacting
solute within a tube or wide channel, as shown in
Fig. 1. In either case, the transverse dimension, 2a,
is assumed to be small compared to the tube or
channel length. An electric field applied along the
axis in the z direction produces an electroosmotic
flow, and the solute carried by this flow is spread in
the axial direction by diflision and dispersion. This
is illustrated by the Gaussian profile indicating the
axial variation of the local transverse average of the
concentration field sometime following the introduc-
tion of an instantaneous planar source. Analogous
spreading occurs at a translating solute interface,
such that an initially discontinuous step in the so-
lute concentration broadens with increasing time.

As solute is convected by the electroosmotic
flow, axial diiYusion tends to spread the profile or,
alternatively, to smear the boundary in the case of
a moving interface. At the same time, the nonuni-
form proiile of the fluid velocity leads to transverse
variations in the concentration field, giving rise to a
transverse diilushe flux. At sufficiently late times,
advective transport in the axial direction is just bal-
anced by diffusive transport in the transverse direc-
tion. The resulting hydrodynamic dispersion pro-
duces a mean axial concentration profile consistent
with dfisive transport alone, though the apparent
diffusivity maybe much larger than the true molec-
ular &iYusivi@ and generally depends on the Peclet
number.

GOVERNING EQUATIONS

Assuming that the fluid is incompressible and
that transport properties are constant, the time-
dependent concentration field is governed by

~ + UVC = DV2C (1)

where c is the local solute concentration, t is time,
u= ui +vj is the local fluid veloci~, and D is the
coefficient of difFusion. Further assuming that the
flow is steady and that inertial effects are small, the
momentum equation may be written as

pv%.1= pevfp (2)

a
t

A

Y

L

u

x 2a

I

c

Figure 1. Schematic cross-section of a tube or
channel. Spreading of an initial concentration pulse
results from dtision and d~persion. Fluid veloci-
ties in an electroosmotic flow are zero on the solid
boundaries and exhibit a boundary layer thickness
comparable to the Debye length.

and the local charge densi~ may be related to the
electric potential through the Boltzmann distribu-
tion given by pe= –2F.zcesinh(zF#/RZ_’) for equiv-
alent ions, where F is the Faraday constant, z is the
ion charge number, Ce is the bulk fluid ion concen-
tration, R is the universal gas constant, and T is
the temperature.

To solve generally for the concentration field,
we now introduce a set of dimensionless variables.
The new normalized dependent variables are taken
as c* = c/co, u* = u/U and & = q5/~, where CO
is some reference concentration yet to be specified,
U is the mean axial fluid speed spatially averaged
across the tube or channel, and ~ is the electric po-
tential on the tube or channel wall. The new inde-
pendent variables are Z*= (z – tTt)/a, y“ = y/a and
t’= Dt/u2, where z and y are the axial and trans-
verse coordinates, and a is the tube radius or chan-
nel half-height. This normalization leads to three
new parameters, the normalized Debye length,

2
where p is the fluid viscosity, pe is the net local

()
~*2–& i = ERT

(4)
charge density, and # is the local electric potential. a 2F2zzc.az
Finally, for a dielectric constant, ~, that does not
vary with position, the Poisson equation governing the normalized wall potential, ~“ = zF~/RT, and

the electric field is the Peclet number, Pe = Us/D indicating the rel-
ative brmortsnce on advective and dtiive trans-

E Vz(tl = –p~ (3) port. -
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Introducing these normalized variables into
the primitive governing equations and rearranging
slightly then yields

( ac”
~ + Pe u*”VC* – —

ax” )
= V2C* (5)

~ V2U* = –v2fl E* (6)
and

~*2 V24*
= ; sinh(~*#*) (7)

for Eqs. (l), (2) and (3), respectively. The new de-
pendent variable, E*= –V#/Ez is the local electric
field vector normalized by the applied axial electric
field, EZ. Note that the operators V and V2 above
are implicitly considered to involve derivatives with
respect to the normalized independent variables Z*
and y* when applied to any normalized dependent
variable.

The normalization additionally introduces one
dimensionless unknown constant, ~ = –y U/ecE=.
Thk constant is the ratio of the mean axial fluid
speed to the Helmholtz-Smoluchowski speed for flow
past a plane charged surface. Its value is given by
the condition

(8)(~+ 1) J1u*y*”dy* = 1

in accordance with the definition of the mean fluid
speed, U. The parameter n in Eq. (8) is used to de-
scribe either the planer or axisymmetric geometries
by taking n=O or 1, respectively.

Recognizing that the incompressible flow field
in a long tube or channel must be one dimensional
and that the radial component of the fluid velociiy
is therefore everywhere zero, the difilon-advection
equation (5) may be rewritten as

~+ Pe(u*–1)~

a2c* 1 a

()

*nac*——
‘&X+ y*nay* y *

(9)

where U* is the normalized local fluid speed in the
axial direction..

Boundary conditions for the normalized con-
centration are c* ~ 1 as Z* ~ —00 and c* -+ Oas x*.+
co for the case of a translating interface, and c* ~ O
as z’ ~ &m for the instantaneous plane source. The
initial conditions are c*(z*, y*, t“) = ?“ (z*) at t*= O,
where

1 -*

I

I

. ...,, ,,, ,, .-,.,. . . . . . . ..... . . ..~ -r >,..,,, ..-. ,–. . ~1,-, ,,, ,-7

.* =
~

c ~ erfc —
2

as i?+o
2@

(lo)

for the interface, and

#2/4t”
.* =c

2-
as t“-?o (11)

for the plane source. The fist of these approximates
an initial unit step at z“ = O, while the second ap
proximate am initial plane source of unit strength
centered at x* = O. Since we are interested here in
a late-time solution, it is convenient to express the
initial conditions in terms of moments of the solute
d~tribution. That is,

lx

L/x “p l(c*–t*)y*”dy*ckc*= o (12)
co o

ss t* 40, for all p z O. If all moments of the func-
tions c*(z*, y*, t*~ O) and 6*(z*) are equal, then the
two functions are the same.

Now recognizing that the second derivative of
the electric potential in the axial direction is small
compared to that in the transverse direction and
that the normalized electric field is defined such that
E*. i =1, the axial component of the momentum
equation (6) may be written as

and the Poisson-Boltzmann equation becomes

(13)

(14)

The far right-hand portion of this expression repre-
sents the Debye-Huckel approximation for the case
in which ~ is small.

Boundary conditions for the fluid velocities are
du*/dy* = O at y*= O and u’= O at y*= 1. Those
for the electric potential are afl/t3y* = O at y*= O
and @=1 at y*= L The resulting axial fluid speed
in the Debye-Huckel Ii.ndt is

cosh(y*/A*) – cosh(l/A* j

‘* = ~*SiIlh(l/~*) – cosh(l/A*)
(15)

for a channel, whfle that for a tube is

Io(y*/A*)– 1()(1/A*)
U* =

2A*Il(l/A*) – Io(l/A*)
(16)

/

The corresponding values of ~ used to obtain
these results are E = 1 – A“tanh(l/A*) and /3 =
1 – 2A*11(l/A*)/lo(l/A*) = l’z(l/A*)/lo(l/A*) for a
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channel and tube, respectively. The result above
for a tube is exactly that previously obtained by
Rice and WMehead [2].

METHOD OF SOLUTION

To solve Eq. (9) we now introduce one more
transformation of the axial coordinate, q =z*/2@.
Introducing this new variable into the diffusion-
advection equation yields

Note that the left side of Eq. (17) yields a homog~
neous solution of the form c* u erfc q. This ia the
well known solution for a translating interface with
either no flow, Pe ~ O, or a uniform axial fluid
speed, u* —1= O. Under the same restrictions, solu-
tions for the csse of an instantaneous plane source
are obtsined from the left of Eq. (17) along with the
term 4t*~c*/&* on the right. The solution in this

case hss the form c* u e–~=/e.
Based on Taylor’s observation [3] that the

transverse variation in solute concentration is pro-
portional to the axial concentration gradient, we
now seek a solution to Eq. (17) in the form

w pej djf*../2=f+~m~gj
Ct (18a)

.
where

w fk
f = fo+ ~ 2kpk/2

k=l
(18b)

The functions gj depend only on the transverse po-
sition, y“, while the functions fk depend only on
the transformed axial position, q. Without loss of
generali~, we sssume that the spatial average of
all gj over the tube or channel cross-section is zero
such that the axial variation of the mean concentra-
tion field is given by the function f alone. Values
of the parameter m = O or m = 1 identi~ the case
of an translating interface or instantaneous source,
respectively.

Boundary conditions for the functions fk are
fo+lssq+-coand fo~Oasq~cm forthecsse
of a translating interface, and ~. ~ O as ~ ~ +ca for
the instantaneous plane source. For th~ latter csse,
the initial condition (12) requires that

L
ccl

2$0 dq = 1 m=l (19)
cc.

Boundary conditions for higher-order functions for
both cases are ~k+ Oas q+ +CO. The initial condi-
tion (12) additionally requires that the higher-order
functions fkfor both the translating interface, m = O
and instantaneous plane source, m = 1, must also
satisfy

1:Vpfkd?l =0 for O <p< k+m–1 (20)

for all k >1. The higher-order moments of fkneed
not vanish since the net exponent of the time in the
corresponding terms of Eq. (12) is greater than zero
forp>k+m–1.

Boundary conditions for the functions gj are
dgj/dy* = Oat y’= Oand y*= 1. Based on the con-
dition that all axial vcwiation of the concentration
field is carried by the function f alone, we addition-
ally require that

I
1
0 gjy*ndy* = O (21)

for all j. Because of this, we see that the time-
dependent function f given by Eq. (18b) represents
the local transverse spatial average of the solute con-
centration as a function of the transformed axial po-
sition and that all axial dispersion will be evident
in this function alone.

Now substituting Eqs. (18a) and (18b) into
Eq. (17) and grouping like powers of time yields

2P’H%HY*”%O-(U*-10‘0 ’22)
for the order @ term. Again grouping like powers,
the order one terms yield

F+[#+4y*n%o-@*-14pe2
+2q~

aq
+ 27nfo = o (23)

Again, m= O for the case of a translating interface
and m = 1 for the csse of an instantaneous plane
source.

Noting that d~o/dq cannot be everywhere zero,
Eq. (22) requires that

9?+?Z$-(U*-1)=0 (24)

where primes denote differentiation of the functions
gj with respect to y“; when later applied to the func-
tions fk these primes denote differentiation with r~
spect to q. Further noting that f. is a function of q

6



only, the leading factor on the left of Eq. (23) must the integral constraint (21) and either the condition
not depend on y*. Thus necessary conditions for the 9;(O) =0 or g~(l) =0.
existence of a solution in the form of Eq. (18) are

g~+n ~ –(?l”-l)gl =ai) (25)
Y*

(1+ CYOPe2) f{ + 2qj$ + %7zji = O (26)

where a. is some yet unknown separation constant
or eigenvalue.

Similarly, we find that the third-order function
g3 and first-order function fl must satis&

g~+n qu”-l)g’-aogl=al (27)
Y

(l+oQ F’e2) ~~+2qf{ + 2(m+l)~1 =-c@e3&

(28)
Note that the form of Eq. (18) is critical to sat-
isfying all of the necessary integral and boundary
conditions on the functions gj. If, for example, the
function ~ were taken as simply ~o, then only the
single eigenvalue aO ever appears in the problem.
As a result, this simpler form of the solution can
not satisfy both of the required conditions g; (0)=0
and gj(l) =0.

The functions gj are unusual in that they are
governed by second-order equations but must sat-
isfy two boundary conditions on their fiat deriva-
tives. In general such a system of equations czm-
not be solved since only one constant of integration
is available to satisfy the two boundsry conditions.
Here this problem ia avoided by appropriate choices
for the eigenvalues, CYk.From the governing equw
tion (24) and condition gj (0) = O, the derivative
g((l) at the tube or channel wall can be written
as

/
gj(l) = l(?J*-l) y“~dy” = o (29)

o
Thus the &s&order solution automatically satisfies
gl (1) = O by the definition of u*. For the higher-
order terms, however, the conditions g.$(1)= O and

g~(l) = O require that

clo=— (n+1)J)u”-l)gdy“~dy” (30)
and

Jq=-(n+ 1) O’[(u”-l)g’ -1-ctogl] y*ndy* (31)

respectively. The eigenvalues for this problem are
thus uniquely determined by the two boundary con-
ditions g~(0) = g$(1) = O. The two constants of inte
gration for each function gj are then determined by

7

RESULTS

Given the eigenvalues a. and al, Eqs. (26)
and (28) can be solved to obtain the functions ~.
and ~1 describing axial variation of the solute con-
centration. For m = O, the case of a translating
interface, these are

fo= ;erfcq’ (32)
and

f,= cqPe3
(1-2q”) e-’” (33)

24=

where

‘“= d&
(34)

For m= 1, the csse of a instantaneous plane source
of unit strength, the zeroth and first-order contri-
butions are

f.=
1 1’

e-~ (35)
24-

and

f,=
cqPe3

(3-2q’2) q’e-q’2 (36)
2@(l+aoPe2)2

where q’ is again given by Eq. (34). Details of the
means by which these solutions were obtained are
provided in the Appendix.

Noting the definition of q given above, we see
that Eqs. (32) and (35) describe a difhuion process
in which the molecular diffurivity, D, is replaced
by an effective &ffuaivi@ D’ =D (1 + aoPe2). This
observation confirms that late-time dispersion yields
a mean axial concentration profile resembling that
due to diffusion alone.

The coefficient of dispersion given by Eq. (30)
is exactly that obtained by Taylor in his asymptotic
ardysis of dispersion in pressurcdriven flows [3].
In that analysis, Taylor made an Mlghtful observa-
tion that some additional flux beyond that due to
dtilon crossed the plane q = O. This flux, he con-
cluded, was proportional to the solute concentration
gradient and therefore must be due to a d~persion
mimicking the behavior of ordinary diffusion. He
reached this conclusion by means of his consider-
able im4ght but provided little in the way of justifl-
cation. Here, we reach the same conclusion, though
by a means that is rigorous and based solely on the
governing equations and boundary conditions.

.—
‘. . —.. .



Equation (24) governing the function gl pos-
sesses closed-form solutions satisfying all required
boundary conditions and integral constraints. For
species transport and dispersion in a tube, the so-
lution is

4gl 4A*10(KTV*)– (2y*2+8A*2–1) I’l(ti)
—=
A* 2A*II(W)–IO(F)

(37)

where # = l/A*. This result is plotted in Fig. 2 for
a range of values of A“. The corresponding zeroth-
order eigenvalue for this problem is

a, (3+16A*2) l?(#) -4A*10(#)11(#)-21,2 (#)
-=
A*2 2[2A*Il(&)–I&)]’

(38)
This second result is equivalent to that obtained
by McEldoon and Datta using integrzd methods for
the case of no surface reactions [4]. Although this
expression is valid over the full range of A“, it is
difiicult to evaluate numerically outside the range
0.1< ~“ <10 due to the exponential growth of the
Bessel functions when A*is very small and due to in-
determinacy of the expression when A“ is very large.
To avoid these problems, we have developed a fit
to this expression that is based on the asymptotic
tilts of Eq. (38) for both small and large J“. The
result is

(39)

This approximation agrees with the results of
Eq. (38) to within 3% over the full range of A“.
Note that the common factor of four on the left
of this expression is intentiomdly left in place since
the Peclet number employed here is that bssed on
the tube radius or channel half-height. Thus the
appropriate expression for cro for a Peclet number
based on the diameter or fu~-height is obtained sim-
ply by replacing this four by a one. Also note that
the liiting behavior of @o = 1/48 for large A“ is the
result obtained by Taylor for pressur~driven flow in
a tube [3].

The results in Fig. 2 are useful in understand-
ing the effects of nonuniform fluid velocity on the
concentration field. Recall from Eq. (18) that the
late-time concentration field is given by c*t*mf2=
fo + (fl +Pe f~ gl)/2~ + 0[1/t].Thus the func-
tion gl in the concentration field is multiplied by
both the Peclet number and the derivative of .fO.
For the case of a moving interface having a high
concentration on the trailing side, the derivative of
.fOis everywhere negative. We thus see from Fig. 2
that the electroosmotic veloci~ profile increases the

0.04
t.i-

-0.08

I Tube

l--2fs2i’1\ o.i

v

\ .Oy

a*= 100

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Position - y*

Figure 2. Firs&order correction describing the
transverse variation in species concentration for
electroosmotic flow in a tube.

concentration on the tube centerline, y“ = O, at all
axial positions. Likewise, the concentration at the
tube wall is everywhere reduced. For the case of an
instantaneous source, however, the derivative of fO

is positive for q <0 and negative for q >0. In this
case, concentrations on the centerline are reduced
behind the mid-plane of the solute peak, but are an-
tisymmetrically increased on the centerline ahead.
Concentrations at the tube walls exhibit just the
opposite behavior.

The parallel results for electroosmotic flow in a
channel are shown in Fig. 3 and are given by

6g1 6A*cosh(@*) – (3y*2+6A*2–1)sinh(~)
~=

~“hh(~) – cosh(~)
(40)

and

a. (2+12J*2) sinh2(#)-9A*sinh(#) cosh(#)-3
~=

6 [Ysinh(#)–cosh(#) ] 2
(41)

This lsst result is again difficult to evaluate for very
small or large values of A“. In this case, the fit based
on asymptotic behavior for small and large A* is

4 5
—=210+—

~.3/2 + $2
(42)

0!0

Again, this approximation agrees with the results
of Eq. (41) to within 3% over the entire range of A“.
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A*=100

43.(38 ~
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Position - y*

Figure 3. First-order correction describing the
transverse variation in species concentration for
electroosmotic flow in a channel.

Note that the limiting behavior of a. = 2/105 for
large A“ is the same as that obtained by Wooding
for pressuredrken flow in a channel [5].

Figure 4 shows the dispersion coefficients for
both the tube and channel as a fun&lon of the
normalized Debye length. The solid curves shown
are the approximate results for each case, while the
symbols represent the exact solutions, The total
height of the symbols represents a relative variation
of about 870, so a symbol in contact with the curve
indicates a relative error between the approximate
and exact result of at most 4Y0.

MINIMUM DISPERSION

The results above are useful in estimating the
condition for minimum dispersion during transport
over a fixed distance. This condition is equivalent to
the condition of minimum theoretical plate height.
The axial extent of spreading in a @en time t due
to both diilhsion and diapersion is given by

By expressing the time in terms of the travel dk
tance 1, t=.4/U= ut/PeD the extent of spreading

9

.“

10-2 10-1 10° 101
Normalized Debye Thickness -A’

Figure 4. Dispersion coefficients as a function
of Debye layer thickness. Symbols indicate exact
solutions; lines indicate empirical fits.

may be rewritten as

‘=2F ‘“)
- This expression exhibits a minimum given by the

condition
dc$

r
-0 at Pe= ~

Z% CYo
(45)

Note that this condition yields the Peclet number at
which the spreading due to d~persion is just equal
to that due to difhsion. The corresponding extent
of spreading is

(46)

This is the minimum possible spreading of a sample
transported over the tied distance L

In cases where the normalized Debye length
is much less than unity, the asymptotic forms of
Eqs. (39) and (42) may be used to evaluate the ex-
pressions above. For either the tube or channel,
this asymptotic form shows that the coefficient of
dispersion is proportional to the square of the nor-
malized Debye length. In this limit, the optimum
Peclet number is inversely proportional to the nor-
malized Debye length and the extent of spreading



over a fixed length of travel ia independent of the
tube or channel transverse dimension. The spread-
ing is instead proportional to the square-root of the
product of the Debye layer thickness and the dis-
tance of travel.

To illustrate the application of these results,
consider the transport in a tube of 10 pm radius
and 100 mm length. Assuming a Debye layer thick-
ness of 100 nm, the normalized Debye length is
A“ = 10–2. From Eq. (39), this gives CYo= 5 x 10–5,
and by Eq. (45) the optimum Peclet number is
Pe = 140. For a difisivi~ of D = 10-9 m2/s, the
equivalent mean fluid speed is 14 mm/s. This speed
is a bit high for most electroosmotic flows, but it
nevertheless illustrates the application these results
and possible limitations of such application. Now
from Eq. (46) we see that the extent of spreadiig
over the 100 mm length of travel is just 0.24 mm.

SUMMARY

Using analytical methods, we have determined
the fist-order concentration field and coefficient of
axial dispersion of a neutral non-reacting solute in
an incompressible electroosmotic flow. Here, in con-
trast to previous approaches, the diapersion is cal-
culated by directly solving the governing transport
equations. Using a late-time series to describe the
full concentration field, the coefficient of diapersion
arises naturally as a necessary condition for satisfy-
ing all required boundary conditions in transformed
spatial and temporal coordinates.

Solutions based on the Debye-Huckel approxi-
mation are presented for both a circular tube and
a channel of infinite width. These results recover
the well-known solutions for dispersion in preasure-
&lven flows when the Debye length is very large. In
this limit, the axial dispersion is proportional to the
square of the Peclet number based on the charac-
teristic transverse dimension of the tube or channel.
In the liit of very small Debye lengths, we find
that the dispersion varies as the square of the Peclet
number based on the Debye length. Simple approxi-
mations to the dispersion as a function of the Debye
length and Peclet number are also presented.

Although dispersion in both electroosmotic and
pressuredriven flows grows as the square of the
Peclet number, the coefficient of d~persion in an
electroosmotic flow may be many orders of mag-
nitude smaller than that for the parabolic veloc-
ity proille of a pressuredriven flow. The low co-
efficient of dispersion permits optimum operation
of microchannel systems at very high Peclet num-

bers. This minimizes the role of ordinary difFusion
in electroosmotic flows, thus offering the potential
for long-range transport with little axial spreadiig
of solute peaks or interfaces due to either dispersion
or diffusion.

In addition to providing physical insight into
the nature of dispersion in electroosmotic flow, the
analytical solutions presented here provide a valu-
able benchmark for developing numerical solutions
to related problems. Direct numerical simulation
of transport in electroosmotic flow is a challenging
task because widely disparate length scales, span-
ning nearly seven orders of magnitude, must be r~
solved. Benchmark solutions are important in such
cases since accurate numerical solutions are diflicult
to obtain.

a
c
c~
D
D’
E=
fk
F
9j
‘m
n
Pe
R
t
T
u
u
u
x
Y
z
ffk
e
P
A
Pe
4
c

NOMENCLATURE

tube radius or channel half-height
solute concentration
ion concentration
effective binary diffusivity
effective diflkiivity inclusive of dispersion
applied axial electric field: EZ = –d~/dx
sx.ial concentration functions
Faraday constant
transverse concentration functions
interface (m= O) or plane source (m= 1)
channel (n=O) or tube (n= 1)
Peclet number: Pe= Us/D
ideal gas constant
time
temperature
local fluid speed
local fluid velocity
mean fluid speed
axial position
transverse position
charge number
eigenvalues
dielectric constant
kinematic viscosi~
Debye length
charge density
electric potential
surface electric potential

Normalized Variables
E* electric field: E*= –V#/EZ
t* time t“ = Dt/a2
u% local fluid speed u* = u/lJ
x* axial position: z“ = (z – V)/a
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Y* transverse position y* = y/a

7 axial position: q = z*/2@
A“ Debye length: A“ = A/a
# inverse Debye length: #= I/A*
~ surface potentiak c“ = .zF(/.RZ’

Subscripts and Superscripts

j order of solution
* asterisk denotes normalized variable
.

hat denotes initial distribution
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APPENDIX

Two subtle manipulations are required in solv-
ing the governing equations presented here. The
purpose of this appendix is to provide some addi-
tional guidance in these subtleties.

The first subtlety arises in obtaining the jl so-
lution for the case of a translating interface. In
th~ case, the governing equation (28) possesses tyo

homogeneous solutions, ~lh, one of the form e-~”
and the other of the form e–~’2erfi q’ where erfi z =
–i erf iz is the imaginary error function. Both of
these automatically satisfy the required conditions

~1~~0 ss q+ +00, so the unknown constants mul-
tiplying these two solutions cannot be determined
from the boundary conditions. The only remain-
ing condition is the integral constraint of the initial
condition given by Eq. (20) for p = O. The second
solution is odd about the origin, so its integral over
the axial domsin vanishes automatically. It thus
appears that the constant multiplying this second
solution cannot be determined from any of the pr~
scribed conditions. Upon examination, however, we
find that the second homogeneous solution exhibits
the behatior flh ~21/q’ as q 4 +00. & a result,
the integral of e-v erii q’ over either half-space is
iniinite. This homogeneous solution thus represents
an infinite total solute in the right half-space and a
corresponding infinite total solute deficit in the left
half-space. The solution is therefore aphysical and
so is appropriately discarded by taking the unknown
constant to be zero. The constant multiplying the
first homogeneous solution is then determined by
the p = O moment, yielding the 1 that appears in
the numerator of Eq. (36).

The second subtlety arises in the correspond-
ing ~1 solution for the problem of a plm.e source.
The governing equation (28) again possesses two ho-
mogeneous solutions, in this case one of t~e form
qle-’f’ and the other of the form 1 – qae–q ‘e&q’.
The fist of these ia odd with respect to the origin,
while the second is even. This second solution au-
tomatically satisfies the prescribed boundary con-
ditions and the initial condition given by Eq. (20)
for p= O. Since this function is even, it also auto-
matically satisfies the required initial condition for
p= L The unknown constant multiplying this solu-
tions thus appears to be indeterminate. In this case,
however, we find that the magnitude of the first mo-
ment of the solution is iniinite over each half-space.
ThE is again not physically possible, and so this
second homogeneous solution is discarded by taking
the undetermined constant to be zero. The constant
multiplying the iirat homogeneous solution is then
determined by the fist moment, giving rise to the
3 appearing in Eq. (36).
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