Spectral utilization in thermophotovoltaic devices

PDF Version Also Available for Download.

Description

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and ... continued below

Physical Description

7 p.

Creation Information

Clevenger, M.B. & Murray, C.S. December 31, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

Physical Description

7 p.

Notes

OSTI as DE99000478

Source

  • 1997 fall meeting of the Materials Research Society, Boston, MA (United States), 1-5 Dec 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE99000478
  • Report No.: WAPD-T--3172
  • Report No.: CONF-971201--
  • Grant Number: AC11-93PN38195
  • Office of Scientific & Technical Information Report Number: 670075
  • Archival Resource Key: ark:/67531/metadc708642

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 16, 2016, 5:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Clevenger, M.B. & Murray, C.S. Spectral utilization in thermophotovoltaic devices, article, December 31, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc708642/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.