A strategy for weapons-grade plutonium disposition

PDF Version Also Available for Download.

Description

A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly ... continued below

Physical Description

96 p.

Creation Information

Sylvester, K.W.B. September 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A political as well as technical analysis was performed to determine the feasibility of glassification (vitrification) for weapons grade plutonium (WGPu) disposition. The political analysis provided the criteria necessary to compare alternative storage forms. The technical areas of weapon useability and environmental safety were then computationally and experimentally explored and a vitrification implementation strategy postulated. The Monte Carlo Neutron Photon (MCNP) computer code was used to model the effect of blending WGPu with reactor grade Pu (RGPu). A mixture of 30% RGPu and 70% WGPu more than doubled the surface flux from a bare sphere of the mixture which assumedly correlates to a significantly increased predetonation probability. Rare earth diluents were also examined (using MCNP) for their ability to increase the compressed critical mass of the WGPu mixture. The rare earths (notably Eu) were effective in this regard. As Pu-239 has a 24,100 year half life, reactivity control in the long term is an environmental safety issue. Rare earths were investigated as criticality controllers due to their neutron absorption capabilities and insolubility in aqueous environments. Thorium (a Pu surrogate) and the rare earths Eu, Gd, and Sm were added to two standard frits (ARM-1 and SRL-165) and formed into glass. Aqueous leach tests were performed (using MCC-1P guidelines) to measure rare earth leaching and determine the added elements` effects on glass durability. Europium was much more leach resistant than boron in the glasses tested. The elements had no negative effect on the environmental durability of the glasses tested at 90 C and minimal effect at room temperature. No fission product releases were detected in the ARM-1 compositions (which contained numerous simulated fission products).

Physical Description

96 p.

Notes

INIS; OSTI as DE97053789

Source

  • Other Information: TH: Thesis (M.S.)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97053789
  • Report No.: DOE/OR/00033--T757
  • Grant Number: AC05-76OR00033
  • DOI: 10.2172/671863 | External Link
  • Office of Scientific & Technical Information Report Number: 671863
  • Archival Resource Key: ark:/67531/metadc708641

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1994

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 20, 2017, 1:48 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sylvester, K.W.B. A strategy for weapons-grade plutonium disposition, report, September 1, 1994; Cambridge, Massachusetts. (digital.library.unt.edu/ark:/67531/metadc708641/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.