Evaluation of alternate extractants to tributyl phosphate. Phase I

PDF Version Also Available for Download.

Description

Preliminary evaluations have indicated that tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some significant advantages over tri(n-butyl) phosphate (TBP) for fuel reprocessing although they also have some disadvantages. The longer alkyl chains in these new extractants decrease their aqueous phase solubility and increase the organic phase solubility of their metal complexes and the metal complexes of their degradation products. Both THP and TEHP extract uranium and plutonium more strongly than TBP; thorium extraction is in the order THP > TBP > TEHP. Tritium extraction is highest with TBP because of slightly higher water extraction. In extractions of thorium, a ... continued below

Creation Information

Arnold, W.D. & Crouse, D.J. April 1, 1981.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 37 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Preliminary evaluations have indicated that tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some significant advantages over tri(n-butyl) phosphate (TBP) for fuel reprocessing although they also have some disadvantages. The longer alkyl chains in these new extractants decrease their aqueous phase solubility and increase the organic phase solubility of their metal complexes and the metal complexes of their degradation products. Both THP and TEHP extract uranium and plutonium more strongly than TBP; thorium extraction is in the order THP > TBP > TEHP. Tritium extraction is highest with TBP because of slightly higher water extraction. In extractions of thorium, a third liquid phase was formed using TBP at a solvent loading of about 40 g/L of thorium and above. Third-phase formation did not occur with THP or TEHP. The dialkyl phosphoric acid degradation products of THP and TEHP showed a markedly lower tendency to precipitate with thorium than did dibutyl phosphoric acid (HDBP). Chemical stability studies showed TEHP to have much greater stability to acid hydrolysis than TBP and THP, which were about equivalent. No differences were detected in the radiation stability of the three extractants. The phase separation properties of THP and TEHP are inferior to those of TBP in both the nitric acid and sodium carbonate (solvent wash) systems. Phase separation was improved appreciably by using a lower extractant concentration than 1.09 M (equivalent to 30 vol % TBP). Difficulties were encountered with TEHP, however, owing to rapid degradation of its phase separation properties with time of contact with HNO{sub 3}; this problem requires additional study.

Source

  • Other Information: PBD: Apr 1981

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM--7536
  • Grant Number: W-7405-ENG-26
  • DOI: 10.2172/706492 | External Link
  • Office of Scientific & Technical Information Report Number: 706492
  • Archival Resource Key: ark:/67531/metadc708483

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1981

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 19, 2016, 1:19 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 37

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Arnold, W.D. & Crouse, D.J. Evaluation of alternate extractants to tributyl phosphate. Phase I, report, April 1, 1981; Tennessee. (digital.library.unt.edu/ark:/67531/metadc708483/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.