Cover Sheet for a Hanford Historical Document Released for Public Availability

Released 1995

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Operated for the U.S. Department of Energy by Battelle Memorial Institute

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PEROXIDE PROCESS - 234-5 BUILDING

The mechanical line being developed at Los Alamos is designed around the peroxide precipitation process. Development work, at that site, on this process has progressed to the point where actual plant equipment can be designed for future use.

The process for converting the peroxide to a reducible fluoride is known. From the reduction step on, no change is necessary in the present process.

The possibilities of a satisfactory peroxide process were recognized before design and construction of the R. G. Line, but the development work necessary for this process had not progressed far enough to have been included in that line. This was due to the need for putting all available manpower on the design and construction and the lack of immediate facilities for development work of this nature.

The gain to be realized by the adoption of the peroxide method is so great that the amount of work necessary for development of this process can certainly be justified at this time. Some of the possibilities contingent on this process are:

1. The elimination of the oxidation step in the 234-5 process.

2. The elimination of one or more of the following:
 (a) The entire Isolation Building, (231), process.
 (b) Some of the steps of the Isolation Building process.
 (c) Wet chemistry steps of the 234-5 Building.

3. The recycling of all wastes from the 234 process to the existing plant facilities; (231 or 224 Buildings).

4. The elimination of the need for glass lined equipment in the purification and recovery operation and elimination of the Supernate Concentration equipment.
5. The elimination of the need for using tantalum in the process equipment.

6. The elimination of the need of a caustic scrubbing system for the process fumes.

Because of these, and many more possible advantages to be gained, it is recommended that serious consideration be given to the handling of peroxide in the R, N. Line before the design or construction develops any further.

C. T. Grosmith
CONTACT ENGINEER

DECLASSIFIED