Pulse propagation in inhomogeneous optical waveguides. Final report, September 15, 1992--March 14, 1996

PDF Version Also Available for Download.

Description

Accomplishments include two Ph.D. dissertations, twenty-six archival journal publications that have appeared in print, six articles that have appeared in conference or summer school proceedings, sixteen regular conference presentations, and eleven invited conference presentations. A complete record of the publications and presentations may be found in Sec. II.E. The areas in which the author has been working--randomly varying optical fiber birefringence, passively modelocked lasers, and quasi-phase matched second harmonic generation--are all still of great current interest. Recent progress in soliton transmission has been nothing short of outstanding with the recent achievement of single channel 15 Gbit/sec, nearly error-free transmission over ... continued below

Physical Description

16 p.

Creation Information

Menyuk, C.R. August 17, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Accomplishments include two Ph.D. dissertations, twenty-six archival journal publications that have appeared in print, six articles that have appeared in conference or summer school proceedings, sixteen regular conference presentations, and eleven invited conference presentations. A complete record of the publications and presentations may be found in Sec. II.E. The areas in which the author has been working--randomly varying optical fiber birefringence, passively modelocked lasers, and quasi-phase matched second harmonic generation--are all still of great current interest. Recent progress in soliton transmission has been nothing short of outstanding with the recent achievement of single channel 15 Gbit/sec, nearly error-free transmission over 35,000 km. At the same time, remarkable progress with the presently used NRZ (non-return-to-zero) transmission mode makes it less clear that solitons will ultimately be used. The author has contributed in important respects to all these areas. In long-distance transmission systems, the length scale on which the birefringence varies randomly (30--100 m) is short compared to the nonlinear and dispersive scale lengths (100--1,000 km). Consequently, it is crucial to understand and characterize this randomly varying birefringence when studying long-distance evolution in optical fibers. That has been done in a series of studies that has also led to the proposal of a numerical scheme for modeling these systems that should be orders of magnitude faster than the schemes presently being used. In the studies of the fiber ring and figure-8 lasers, the author proposed that nonlinear polarization rotation is the mechanism responsible for fast saturable absorption in the fiber ring lasers--a result that was later verified experimentally. He also explored a new approach to determining the conditions for modelocking and self-starting in these lasers that uses the computer to determine the linear stability of both the pulsed and cw solutions. In all this work, the author has worked closely with leading experimentalists and their groups. Section 2 of this report describes in more detail some of the specific accomplishments.

Physical Description

16 p.

Notes

OSTI as DE99000052

Source

  • Other Information: PBD: 17 Aug 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE99000052
  • Report No.: DOE/ER/14090--6
  • Grant Number: FG05-89ER14090
  • DOI: 10.2172/666145 | External Link
  • Office of Scientific & Technical Information Report Number: 666145
  • Archival Resource Key: ark:/67531/metadc708449

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 17, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 5, 2015, 2:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Menyuk, C.R. Pulse propagation in inhomogeneous optical waveguides. Final report, September 15, 1992--March 14, 1996, report, August 17, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc708449/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.