Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

PDF Version Also Available for Download.

Description

A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of ... continued below

Physical Description

Medium: P; Size: 110 pages

Creation Information

Hamilton, ML; Gelles, DS; Lobsinger, RJ; Johnson, GD; Brown, WF; Paxton, MM et al. March 27, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9 at higher temperatures. Neither tensile nor rupture strength appear to be degraded by irradiation to fast fluencies on the order of 8 x 10{sup 22} n/cm{sup 2} in the range of 370--760 C, although some loss of ductility has been observed. The impact resistance of the alloy is very poor in the unirradiated condition, and is significantly degraded by irradiation.

Physical Description

Medium: P; Size: 110 pages

Notes

INIS; OSTI as DE00752621

Source

  • Other Information: PBD: 27 Mar 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-13168
  • Report No.: AT6020000
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/752621 | External Link
  • Office of Scientific & Technical Information Report Number: 752621
  • Archival Resource Key: ark:/67531/metadc708437

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 27, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 6, 2016, 2:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 21

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hamilton, ML; Gelles, DS; Lobsinger, RJ; Johnson, GD; Brown, WF; Paxton, MM et al. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications, report, March 27, 2000; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc708437/: accessed May 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.