A systems approach to risk assessment: Application to methylmercury from coal combustion

PDF Version Also Available for Download.

Description

The Department of Energy (DOE) asked Brookhaven National Laboratory (BNL) to perform a probabilistic assessment of the health risks associated with Hg from coal-fired power plants. The objective of the assessment is to estimate the incremental health risks that might ensue from a typical coal-fired power plant, together with their uncertainties, taking into account existing background levels and the actual adverse health effects that have previously been associated with exposure to various Hg species. Mercury has a long history of association with adverse neurological effects at high exposure levels. The most important current exposure pathway has been found to be ... continued below

Physical Description

12 p.

Creation Information

Saroff, L.; Lipfert, F.W. & Moskowitz, P.D. January 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Department of Energy (DOE) asked Brookhaven National Laboratory (BNL) to perform a probabilistic assessment of the health risks associated with Hg from coal-fired power plants. The objective of the assessment is to estimate the incremental health risks that might ensue from a typical coal-fired power plant, together with their uncertainties, taking into account existing background levels and the actual adverse health effects that have previously been associated with exposure to various Hg species. Mercury has a long history of association with adverse neurological effects at high exposure levels. The most important current exposure pathway has been found to be ingestion of fish containing methylmercury (MeHg), which is the end product of bioconcentration moving up the aquatic food chain. Mercury can enter natural waters from either industrial discharges or from atmospheric deposition of various inorganic Ho. compounds. Because of the worldwide background and the existence of local emissions sources, Hg deposition must be considered on local, regional and global scales. The regulatory technical challenge presented by methy1mercury is to protect public health without foreclosing an appreciable a portion of the food supply or impacting on the lifestyles of North American native populations. This paper presents an abbreviated account of the DOE/BNL risk assessment, as viewed from a systems perspective. We review the structure of the model, the sources of data used, the assumptions that were made, and the interpretation of the findings. Since publication of the first risk assessment report, we have refined our estimates of local atmospheric dispersion and deposition and {open_quotes}calibrated{close_quotes} the pharmacokinetic portion of the model against observations.

Physical Description

12 p.

Notes

OSTI as DE95008858

Source

  • 20. international technical conference on coal utilization and fuels systems, Clearwater, FL (United States), 20-23 Mar 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95008858
  • Report No.: BNL--61521
  • Report No.: CONF-950313--1
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 67767
  • Archival Resource Key: ark:/67531/metadc708432

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 25, 2015, 4:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Saroff, L.; Lipfert, F.W. & Moskowitz, P.D. A systems approach to risk assessment: Application to methylmercury from coal combustion, article, January 1, 1995; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc708432/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.