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Abstract

A significant improvement to the classical least squares (CLS) multivariate

analysis method has been developed. The new method, called prediction-augmented

classical least squares (PACLS), removes the restriction for CLS that all interfering ‘

spectral species must be known and their concentrations included during the calibration.

We demonstrate that PACLS can correct inadequate CLS models if spectral components

left out of the calibration can be identified and if their “spectral shapes” can be derived

and added during a PACLS prediction step. The new PACLS method is demonstrated for

a system of dih.tte aqueous solutions containing, urea, creatinine, and NaCl analytes with

and without temperature variations. We demonstrate that if CLS calibrations are

performed using only a single analyte’s concentrations, then there is little, if any,

prediction ability. However, if pure-component spectra of analytes left out of the

calibration are independently obtained and added during PACLS prediction. then the CLS
.-.

prediction ability is corrected and predictions become comparable to that of a CLS

calibration that contains all analyte concentrations. It is also demonstrated that constant-

temperature CLS models can be used to predict variable-temperature data by employing

the PACLS method augmented by the spectral shape of a temperature change of the water

solvent. In this case, PACLS can also be used to predict sample temperature-with a
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standard error of prediction of 0.07 ‘C even though the calibration data did not contain

temperature variations. The PACLS method is also shown to be capable of modeling

system drift to maintain a calibration in the presence of spectrometer drift. -

Key Words: Classical least squares (CLS); Prediction-augmented classical least squares

(PACLS); Multivariate calibration; Near JR spectroscopy; Aqueous solutions;

Temperature calibration; Spectrometer drift.

a

Xsandia is a multi-ProWam laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy under Contract DE-AC04-

94AL85000.

I

2

.—. .— ,,,,,. ,7. ,,,...~ .,, .!... . . -—.. .—--.



, ‘ a

INTRODUCTION

Classical least squares (CLS) multivariate modeling has been used for the

quantitative analysis ofinfrared spectra forover 20years. 1'z'3'4'5'6"7'8The CLS calibration

and prediction algorithms are based upon explicit linear additive models, e.g., Beer’s law,

that require the quantitative knowledge of all spectrally active components in the

calibration sample set. With CLS modeling, it has not been possible to accurately

account for spectral variations resulting from spectrometer drift, sample insertion effects,

or system nordinearities since explicit equations required to model these effecrs are not

known. The introduction of partial least squares(PLS)9’10’11and principal component

regression (PCR) 12factor analysis methods provided the analyst with algorithms that

could be used even if only the concentrations of a single analyte were known in the

calibration sample set. PLS and PCR anaIysis methods could also empirically

spectral variations due to spectrometer drift, sample insertions, and unknown

modei

interferences in the calibration spectra. PLS and PCR are even capable of modeling

nonlinearities in the data through the addition of factors that can approximate the

nonlinear behavior. CLS methods were then relegated to the analysis of simple well-

characterized linear systems or gas-phase samples13where Beer’s law was followed and

all spectrally interfering components were known. We have continued to use CLS

methods for qualitative spectral interpretation since CLS always generates better pure-

component spectral estimates than possible with either PLS or PCR.14 However, for

quantitative analysis of spectral data, we have generally used PLS or PCR because they

exhibit superior quantitative prediction performance relative to CLS, except possibly in
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the quantitative analysis of simple infrared gas-phase spectra15 or inductively coupled

plasma atomic emission spectra. *6

To address the limitations of CLS, we have developed a new cLs-has@

algorithm that we have named prediction-augmented classical least squares (PACLS).

PACL-Scan significantly improve the applicability and flexibility of CLS methods. With

the PACLS algorithm, the detrimental effects of unknown components in the calibration,

temperature variations, spectrometer drift, sample insertion related optical effects, and

even nonlinearities in the CLS calibration model can be corrected during the CLS

prediction phase of the analysis. To correct the harmful effects of the above sources of

spectral variation, the spectral intensities or spectral shapes of the spectral variations not

included during CLS calibration must be empirically measured and included in the CLS

prediction portion of the analysis. We will show that adding the missing spectral shapes

during CLS prediction compensates for the prediction errors generated when knowledge

of their presence in the calibration data is not explicitly included as component

concentrations in the CLS calibration. A variety of methods to empirically obtain the

spectral shapes required to correct the detrimental effects will be discussed.

In this paper, we describe the new PACLS algorithm and demonstrate its use with

near-infrared (NIR) spectra f~om a set of multi-component dilute aqueous solutions. An

explanation of how the new PACLS method can produce accurate results in the presence

of an inadequate model will be presented. The PACLS method will first be demonstrated

by performing the CLS calibra~ion after excluding some of chemical components from

the model. The deficient CLS model will then be used with and without the spectral

shapes of the missing components added during CLS prediction to compare the
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prediction abilities of the two methods on unknown samples. In addition, a constant-

temperature CLS model will be applied to sample spectra obtained at variable

temperatures. The CLS predictions will becompared with and without the spectral shape

of the effect of temperature changes added to the CLS prediction. ‘-” ““” ‘ ‘ “‘

the new PACLS method ailows for accurate solution temperatures

when temperature variation was not a parameter that was included

calibration data.

We wm also snow tnat

to be predicted even

in the original CLS

EXPERIMENTAL

The samples and NIR spectra used in this study have been described

previously.17’18The samples consisted of31 dilute solutions of urea, creatinine, and NaCl

in a water solvent. The 31 compositions were obtained via a repetitive sampling

schemelg that produced a pseudo D-optimaI desi=~ with each of the three components

separately varied at 16 levels over the concentration range from Oto approximately 3000

mg/dL. The spectra of the samples, sealed in 10-mm pathlength cuvettes, were obtained

in random order, and the spectra of three samples were obtained again at the end of each

study. Spectra were collected initially at a constant temperature of 23°C and collected

several days later with the samples varying over a temperature range of 20 to 25°C. All

samples were maintained at the design temperature using a Hewlett Packard (HP) Peltier

temperature controller that could maintain sample temperatures to 0.05°C (Al cr). The

HP temperature controller allowed 1000 rpm stirring with a Teflon-coated magnetic

stirring bar sealed in the cuvette. In order to assure that the samples had equilibrated to

the design temperature, long equilibration times (28 rein) were used. The t&d time of
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data collection was 7 to 9 hr during a single day. Therefore, significant spectrometer drift

was evident over the time of the data collection. In a separate experiment, variable-

temperature spectra of pure water in a cuvette were obtaified in random order at 0.5°C

intervals from 20 to.25°C.

iWR spectra were collected on a Nicolet Model 800 Fourier transform infrared
/

(FT-IR) spectrometer equipped with a liquid-Nz-cooled InSb detector, a quartz beam

splitter, and a 75-W tungsten-halogen lamp. A total of 256 interferogram scans were

sib~al averaged for each sample and background spectrum. Interferograms were Fourier

transformed after applying Happ-Genzl anodization to obtain single-beam spectra at a

nominal resolution of 16 cm-l. Background spectra were coilected of an empty cuvette

after each sample spectrum. Best prediction results were obtained when using an

averaged background for all samples rather than a separate background for each sample.

Therefore, the single-beam sample spectra were ratioed to the average background

spectrum and converted to absorbance.

The CLS and PACLS algorithms were programmed at Sandia National

Laboratories using the Array Basic language of the GRAMS 32 software (Version 5.1).

Spectra were analyzed over the spectral range from 7500 to 11000 cm-*. Cross validation

leaving out one sample at a time was employed to obtain cross-validated standard errors

of prediction (CVSEP) for assessing prediction ability and to improve outlier detection.

All spectra were included in the analyses since spectraI F ratioio and Mahakmobis

distancetg outlier metrics did not indicate any outlier samples.
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THEORY

The CLS calibration and prediction algorithms have been presented previously in

various forms. 1-8In this discussion, matrices are represented as upper-case bold letters;

vectors are represented as column vectors using lower-case bold letters. Row vectors and

transposed matrices are denoted by a superscript T. Lower-case letters in italics represent

scalars. The CLS model can be written

A= CK+E~ (1)

where A is then x p matrix of absorbance for then samples at the p frequencies, C is the

n x m matrix of reference concentrations for them components, K is the m x p matrix of

pure-component spectra at unit concentration. Sample pathlength can be included in Eq.

1 by dividing the intensities for each spectrum (row) in A by the known pathlength of the

sample. During calibration, we solve for the least squares solution of K, i.e.. K. The

least-squares solution, K, is given by

K = (tiC)-’CTA . (~)

A variety of methods, including singular value decomposition,zo can be employed to

improve the numerical precision of the solution to Eq. (2). If all components are

spectrality active in the spectral region analyzed and their concentrations are included in

Eq. 2, then the data should not be mean centered since the (CTC) matrix to be inverted in

Eq. 2 will be-nearly singular (it will be closer to singular for ideal solutions and as errors

in the reference concentrations decrease). A and C can be mean centered if at least one

component is not spectrally active in the spectral region being analyzed or if pathlengths

of the samples are variable.4 If sources of spectral variation are not represented by

component concentrations in the C matrix, then the K matrix will not accurately

.
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represent the pure-component spectra. As will be demonstrated in the Results and

Discussion Section, errors in the estimated pure-component spectra can result in

significant prediction errors. Although we use a single continuous region of the spectra,

all the methods presented here are also applicable to spectra with discontinuously

selected spectral intensities.

During CLS prediction, we solve for the least-squares estimated component

concentrations, ~u, of them components in the n“ unknown samples to be predicted.

The subscript u is used to indicate unknown samples. The CLS solution for ~u is given

by

% = @T(KKT)-’ (3)

where Au represents the spectral matrix of the unknown samples to be predicted. We

originally describedz~ how the ~u and K matrices can be augmented to account for

baseline variations in the data. The K matrix can be auegnented by a row of ones to

represent a baseline offset and by a row of integers representing the index of the spectral

data (e.g., indexed in order of spectral frequency for Fourier transfo~ infrared data) to

represent a linearly sloping baseline. The row of integers should be linearly mapped to

the region from -1 to 1 to improve the condition of the KKT matrix to be inve~ed.

Quadratic baselines can be added by simply adding a row that is the square of the row

representing the linear baseline slope. Higher order baseline terms can be added by

adding rows of the higher order transformations of the linear baseline slope.

Alternatively, a set of orthogonal Legendre polynomial can be added to the K matrix to

represent polynomial baselines of any order. In a similar manner, any functional form of

..



,

spectral baselines can be fitted by augmenting the ~ matrix with rows representing the

functional form of the baseline to be fitted. For each row added to the K matrix,

coefficients representing the fitted magnitudes of the baseline components for each

prediction sample must be added as columns to the sample concentration matrix ~u. The

. A

augmentation of the Cu and K matrices provides for a simultaneous fit of the baseline

components and the Iinear additive pure-component spectra. Unless the baseline

variation is orthogonal to all other sources of spectral variation, a simultaneous least

squares fit of these baseline spectral shapes is always preferable to simply baseline

correcting the spectral data as a separate preprocessing step.

The prediction-augmented classical least squares (PACLS) method presented here

is similar to the addition of the explicit baseline shapes during prediction to correct for

simple baseline variations in the spectral data to be predicted. However for P.4CLS,.;

empirically determined shapes are added in addition to the theoretical functional forms of

the baselines. The new PACLS method is useful when all sources of spectral variation in

the spectral region being analyzed are not known during the calibration phase of the CLS

analysis. The exclusion from the calibration of spectral component concentrations or

other parameters that cause spectral changes in the samples will result in estimated pure-

component spectra that are each contaminated by the spectral variation of the unmodeled

spectral components. The degree of contamination will depend on the desiemof the

calibration sample set and the magnitude and number of independent sources of spectral

variation left out of the CLS calibration. The use of contaminated CLS-estimated pure-

component spectra during the CLS prediction will cause prediction errors to be larger

relative to a CLS analysis that included representations of all sources of spectral variation

9
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in the CLS calibration. The new PACLS algorithm allows for spectral shapes of

components that were left out of the calibration to be added during CLS prediction

order to compensate for the absence of those spectral components during the CLS

calibration. The requirement for the PACLS algorithm is that important spectral

components left out of the CLS calibration have their spectral shapes or linear

in

combinations of their shapes identified and included during the CLS prediction phase of

the analysis. As in the case of baseline augmentation, the new PACLS algorithm uses the

same equations as the CLS algorithm except that during CLS prediction, the K matrix in
A

Eq. 3 is augmented with rows representing the spectral shapes of those spectral

A

components that were not included in the CLS calibration. If ~ represents the

auejynentedmatrix with spectral shapes added as rows in the original K matrix, then the

PACLS prediction becomes

&=AukT(&T)-l

.

where ~U represents the matrix of CLS-estimated concentrations that has been

augmented with corresponding columns of parameters to estimate the least-squares

contribution of each augmented shape to each prediction sample spectrum contained

the matrix of unknown sample spectra to be predicted, Au. The PACLS algorithm

in

applied to a single sample spectrum is depicted diagrammatically in Fig. 1. Figure 1

demonstrates the case where the CLS-estimated pure-component spectra of the molecular

species (urea, creatinine, NaCl, and water) were obtained from the constant-temperature

data and the spectral shape of a temperature change in the solutions is added in PACLS

prediction along with an offset term and a linear term to represent a simultaneous linear

10



baseline fit. The augmented spectral shapes are represented by dashed lines to indicate

the spectral shapes added with the PACLS prediction. Corresponding least-squares

estimated concentration elements are added to the concentration vector to complete the

PACLS equations. The addition of spectral shapes both changes and corrects

concentration estimates relative to predictions without added spectral shapes. The K

matrix can be augmented during the creation of the cross-validated calibration model and

the augmented model can be saved for prediction of unknown samples. By including the

augmentation during cross-validation, more realistic estimates of prediction ability can be

obtained and outlier detection sensitivity is improved. Alternatively, the augmentation

can be performed before true prediction on unknown samples. Both types of

augmentation, which yield identical concentration predictions for analytes included in the

calibration, will be discussed in the Results and Discussion Section.

The fact that the PACLS method can correct for inaccurate estimated pure-

component spectra when sources of spectral variation are left out of the CLS model can

be understood by examining either the CLS regression coefficients or the net-analyte

signals (NAS)OZIThe vector of p regression coefficients for each of the m components

included in the CLS calibration are contained as them columns of KT(KKT )-1 and

AAa

~T (~T~T )-1 in Eq. 3 and Eq. 4, respectively. The predicted analyte concentration is
...

simply the dot product of the unknown sample spectrum and the regression coefficient

vector for the analyte. Each CLS prediction regression coefficient vector is proportional

to the NAS for the corresponding analyte. Therefore, both the CLS regression coefficient

vector and the NAS for a given component represent that portion of the anaiyte spectral

signal that is orthogonal to all other sources of spectral variance. The NAS is the only

11
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portion of the analyte signal that is available for prediction.22 We will demonstrate in the

Results and Discussion Section that the regression coefficients-for a given analyte are

identical when 1) all the sources of spectral variation are included in the CLS calibration

or when 2) sources of spectral variation are Ieft,out of the calibration but the spectral

shapes of missing sources of spectral variation are added during the PACLS prediction.

Since the NAS’S are proportional to the regression coefficients, the same equivalence in

the two cases is also true for the net analyte signals. The addition of the proper spectral.

shapes during PACLS prediction, therefore, corrects the regression coefficients for their

absence during CLS calibration. Since the regression coefficient vector is corrected by

this procedure, clearly the PACLS concentration prediction estimates will also be

corrected. Empirical demonstration of this fact will be made in the Results and

Discussion Section.

RESULTS AND DISCUSSION

Figure 2a and 2b present NIR spectra and the corresponding mean-centered
..

spectra, respectively, of all variable-temperature samples for the entire data set. iMuchof

the broad baseline variation present in the spectra is due to spectrometer drift during the

day. The effect of the 5 ‘C temperature variation on the spectra is as great as the sum of

all the chemical component changes in the samples. The spectra of the constant-

temperature data have been presented previously .18The constant-temperature spectra

exhibit a somewhat smaller magnitude of system drift spectral variations either due to the

shorter time required for obtaining the constant-temperature data or due to better

spectrometer stability during the day the constant-temperature data were collected.
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The cross-validated CLS calibration prediction results for the constant- and

variable-temperature data were calculated. During the cross-validation procedure, a

single sample spectrum was removed during each rotation of the cross validation. Time

of data collection was included in the CLS calibration to compensate for the linear

portion of drift in the system with time,14and a quadratic spectral baseline fit was

included in the prediction phase of the CLS analysis. Unlike the factor analysis methods

of PLS and PCR, CLS does not require cross validation for factor selection. However,

cross validation is desirable when implementing CLS calibration both to improve outlier

detection and to obtain more realistic estimates of CLS prediction abiIity. The cross-

validated prediction results (cross-validated standard error of prediction (CVSEP) and

squared correlation coefficient (R*)) for all three analytes in the constant- and variable-

temperature data are given in Table I. The cross-validated results for temperature are

also presented in Table I for the variable-temperature data. The cross-validated CLS

calibration prediction results for the constant-temperature data are presented for urea in

Fig. 3. The prediction results in Table I and Fig. 3 are not as precise as those achieved

with PLS lJ since insertion errors, nonlinear components of spectrometer drift. small

uncontrolled temperature variations @O.1‘C), and potential nonlinearities are not

explicitly included in the CLS analysis. However, the purpose of this study was to

demonstrate prediction improvements using PACLS compared to CLS. Fu[ure papers

will demonstrate how to achieve CLS predictions that are competitive with PLS methods.

Figure 4 shows the cross-vaIidated prediction results for a CLS analysis of the

constant-temperature data when only urea concentration and time of data collection (to

compensate for linear drift) are included in the concentration matrix during calibration.

13
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The poor prediction results demonstrate why CLS has not been used when all interfering

analyte concentrations are not available during calibration. Table II gives the cross-

validated CLS predictions for each analyte when the CLS model only includes time of
.

data collection and concentrations for the single analyte being predicted. Cross-validated

prediction results are very poor for all three analytes. However, we can use the new

PACLS algorithm to improve predictions if the spectral shapes of the various analytes

whose concentrations are left out of the model can be obtained independently and added

during prediction.

Estimates of these analyte spectral shapes were derived from the variable-

temperature data using a CLS calibration model that includes all chemical components

along with sample temperature and time of data collection. The CLS-estimated pure-

component spectral shapes for the three analytes, the water solvent, and temperature are

shown in Fig. 5. It is interesting to note that the estimated pure-component spectrum of

NaC1 is due to the interaction of NaC1 with the solution rather than due to spectral

features of NaCl since NaCl is ionic in solution. Yet this interaction is both adequate and

sufficiently unique for accurate CLS predictions to be obtained for NaC1. Urea and

creatinine have their own spectral features due to molecular vibrations of the molecules,

but they also interact with the water solvent to yield additional spectral features in the

CLS estimated pure-compon&nt spectra.

The spectral shapes of the two analytes and water solvent left out of the CLS

calibrations were added to a PACLS prediction step during cross-wdidation of the

constant-temperature data. The improved PACLS predictions are presented in Table II

next to the prediction results of the deficient CLS models. The results in Table II

,.
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demonstrate that the concentration predictions are corrected with the addition of

estimated pure-component shapes in the PACLS algorithm. These PACLS predictions

are comparable to predictions obtained with standard CLS using all component

concentrations (See Table I). Thus, we have empirical evidence that the concentration-

deficient CLS models can be corrected with the PACLS algorithm by the addition of

experimentally derived spectral shapes of the components whose concentrations were

out of the CLS models.

Spectral shapes representing the effect of the analytes on the solution spectra

could be more readily obtained by spiking a calibration sampie with the analyte and

left

..

performing a CLS analysis (Eq. 2), on the spectra before and after spiking. Alternatively,

the pure-component estimate could be obtained by subtracting the spectrum of the sample

without spiking from the spectrum obtained after spiking the sample. In this latter case,

the difference spectrum will be the spectral shape of the analyte with displacement of the

solution. If the spectral shape added during the PACLS analysis is this difference

spectrum, then all data should be mean centered during CLS calibration.

Figure 6 compares the CLS-estimated pure-component spectrum of urea when all

component concentrations are included in the CLS analysis (spectrum b) to the spectrum

when only urea concentrations are included in the analysis (spectrum a). Clearly, the

urea pure-component spectrum a is contaminated by the unmodeled spectral variation of

the other interfering spectral components. Since water is the dominant component in

these calibration samples, the CLS-estimated urea pure-component spectrum a is almost

identical to that of water. Two calculations of the net analyte spectra for urea are also

included in Fig. 6. One calculation is based on CLS predictions with all component

15
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concentrations and times of data collection included in the CLS model. The other

calculation is for PACLS where only urea concentrations are included in the CLS model,

but CLS estimates of the creatinine, NaCl, H20, temperature, and linear drift pure-

component sp”ectrafrom the variable temperature solution data were included-in the

PACLS model. The NAS vector is the same within the numerical precision of the

calculation in both,cases (NAS vectors are displaced for clarity). Clearly, if the NAS of

urea is the same in each case, then predicted urea concentrations must be identical in each

case. Thus, the effects of the inaccurate shape of urea in the second case are exactly

corrected by the addition of the appropriate spectral shapes during the PACLS prediction.

It is interesting to note that the NAS and regression coefficients are not affected by the

magnitude of the shapes added during prediction augmentation. Therefore, quantitative

determination of the added spectral shapes is not required.

The prediction results discussed above make it clear that the PACLS method

reduces the restriction that the concentrations of spectrally active species must be known

during CLS calibration. A further advantage of the PACLS algorithm is its ability to
,..

accommodate the presence of unmodeled components that may appear in the prediction

samples that were not present during calibration. This advantage of PACLS over the

standard CLS algorithm can be demonstrated for the case where a constant-[emperamre

CLS model is applied to the spectra of samples of varying temperature.

Figure 7 shows the prediction results for urea when a conventional CLS model

built upon the constant-temperature data is applied to the spectra of the samples collected

several days later at variable temperatures between 20 and 25”C. Table III presents the

prediction results for all three analytes in this case where the constant-temperature CLS

16
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model is applied to the variable-temperature spectra. Included in Table IV are the

standard error of prediction (SEP), the bias-corrected SEP (BCSEP), the bias, and the

squared correlation coefficient (R2) for the prediction results. The predictions exhibit a

significant bias and loss of precision due primarily to the spectral variations OFthe

unmodeled temperature spectral component. The advantage of the PACLS method in I

true prediction mode can be demonstrated by using this same example.

We should be able to improve the CIA prediction results by augmenting the

PACLS prediction step with the spectral shape of a temperature change. Table IV

summarizes the prediction results for urea, creatinine, and NaCl when the spectral shapes

of a temperature change and linear drift estimated from the independently obrained

variable-temperature pure-water solvent data (20° to 25°C temperature range) are added

to K from the constant-temperature CLS calibration. The PALCS prediction results in

Table IV indicate significant improvements in prediction over those in Table HI, but the

bias and prediction precision are not as good as the original CLS cross-validated

calibration predictions of the constant- or variabie-temperature data (see Table I).

However, another source of spectral variation not included in this temperature-augmented

PACLS model is the variation due to unmodeled long-term drift between the two sets of

data and the short-term drift during the 9-hour collection of the variable-temperature

solution data. The absence of these sources of spectral variation in the PACLS model

causes inflated prediction errors.

In order to accommodate both temperature changes and short- and long-term

spectrometer drift, we must take an approach that is somewhat different than presented
.

above. The PACLS algorithm has the opportunity to model temperature variations and

..
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complex short- and long-term drift through the use of a set of subset samples measured

during the collection of both constant- and variable-temperature spectral data sets. We

first select five samples that span the concentration range of the calibration and cover the

20-25 “C temperature range in the variable-temperature data set. Spectral differences

are generated from each pair of samples measured in both the constant- and variable-

temperature data sets. This set of spectral differences represents linear combinations of

the effects of temperature variations and long- and short-texm drift differences between

measurements of the same physical specimens for different spectrometer and temperature

conditions. If these spectral differences are very similar, then adding these spectral

shapes could cause a matrix condition problem. We can solve any matrix condition

problem by performing an eigenvector analysis of the spectral differences and retaining

only the significant eigenvectors. The prediction results for PACLS obtained by adding

the 5 spectral differences from the s,ubsetspectral pairs are presented in Fig. S for urea.

The prediction results for all three analytes are given in Table V. In order to avoid

overfitting, the prediction results in both Fig. 8 and Table V are based on only the 26

samples not selected as subset samples. The prediction results in TabIe V are now even

better than the prediction abilities of the original CLS calibration model for either the

constant- or variable-temperature data. The improvements over the original calibrations

can be attributed to the inclusion of the effects of temperature variation and long- and

short-term spectrometer drift that are present in the spectral shapes of the difference

spectra added during in the PACLS analyses. These improved prediction results can be

obtained without re-measuring the entire sample set at variable temperature folIowed by

recalibration. $impl y measuring the effect of temperature and drift on the sample

18
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solution with the use of subset sample spectra with the PACLS algorithm corrects the

deficient CLS model without extensive recalibration. “

If the spectral shape of the unmodeled component is not present in the calibration

spectra, then the PACLS method can even be used to quantify the concentrati~n of the

unmodeled component in the unknown samples. In the example presented in this paper,

temperature is nearly constant (*O.1‘C) in the calibration sample set but varies

considerably in the prediction sample spectra (fl.5°C). The elements in ~u that

correspond to the added shape of the effect of temperature during PACLS prediction wili

represent the temperature estimates for the unknown samples. PACLS estimated

temperatures for the variable-temperature spectral data are plotted in Fig. 9 as a function

of the measured reference temperature for these samples. In order to account for

spectrometer drift while aIso predicting temperature, a set of 5 sample spectra measured

at 23°C were taken from both the constant- and variable-temperature data sets. The

corresponding difference spectra of the respective samples in the two data se[s yield the

spectral shapes needed to correct for the system drift. The spectral shape of temperature

changes was obtained from the variable-temperature spectra of pure water. Both the
.

spectral shape of a temperature change in water and the drift spectral shapes from the

23°C subset samples were added during the PACLS prediction of the variable-

temperature spectra in order to both correct for temperature variations and to predict

temperature. As before, the spectra of the five subset samples were not predicted to

avoid potential ovex%ttingof the data. The PACLS SEP for temperature demonstrated in

Fig. 9 is 0.07”C, which is not much greater than the ability of the temperature controller

to control the temperature of the sample solutions (a= 0.05”C). Thus with ~uantitatively

19
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obtained spectral shapes, PACLS has the added advantage that it allows the unmodeled

component to be quantified. Accurate temperature estimates are”obtained without the

requirement for redeveloping multivariate spectral calibration models using calibration

data containing temperature variations. Therefore: significant improvements in ~

efficiency, cost, and time accrue from the new PACLS method. If temperature had

significantly varied during the calibration and sample temperatures were not inc!uded in

the C matrix for the CLS calibration model, then temperature predictions would not be

accurate with the PACLS method because the temperature variations would si~~~ficantly

contaminate all the pure-component spectra. Temperature predictions based solely on the

pure temperature shape would, therefore, be in error. The Ml.1‘C variation in the original

calibration data apparently is not sufficiently large to greatly degrade the PACLS

temperature predictions of the 5°C variation in the variable-temperature solution data.

- CONCLUSIONS

A significantly improved CLS method has been presented that greatly increases

the accuracy and applicability of CLS calibration and prediction methods. The ability of

the new PACLS method to correct CLS

increased flexibility for CLS modeling.

model deficiencies during CLS prediction allows

Any source of spectral variation that is not .

included in the concentration matrix during CLS calibration can be accommodated in

CLS prediction if the spectral shape of the unmodeled spectral variation can be obtained.

Therefore, PACLS is idealIy suited to improve CLS calibration modek when 1)

spectrally active species are present in the calibration but their concentrations are not

known or included during calibration, 2) unmodeled components are present-in the

20
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unknown prediction samples, 3) maintaining a calibration on a single spectrometer, 4)

transferring a calibration model between spectrometers, or 5) to correct for changes in

spectrally active purge-gas components. The source of each spectral interferent must be

identified and its spectral shape obtained and included in the PACLS prediction.

Generally the spectral shape of the interferent is obtained empirically, but its shape could

also be obtained from other sources, e.g., spectral libraries. Greatest accuracy is expected

if the spectral shape is derived from the same spectrometer as used when collecting

calibration or unknown sample spectra.

It is also possible that the PACLS algorithm can be used to accommodate

nonlinearities. Modeling nonlinearities could be accomplished by varying the analyte

over a range of concentrations in a representative sample. Quadratic or higher order

concentration terms can be added to the concentration matrix in the CLS estimate of the

analyte pure component to approximate the effects of the nonlinearity. Altema[ively,

interaction terms (e.g., concentration cross-product terms) can be included in the

concentration matrix of samples spiked with variable amounts of the analyte. Thus. pure-

component spectra of the interaction terms, quadratic terms, etc. can be obtained and

added during PACLS prediction.

Since the PACLS predictions are independent of the magnitude of the added

shapes, the augmented shapes do not have to be obtained quantitatively. In addition,.

linear combinations of the augmented shapes can be used in PACLS. This latter fact

allowed us to use the subset difference spectra that contained linear combinations of

temperature and drift variations in varying proportions. In order for linear combinations

of spectral shapes to perform properly in the PACLS algorithm, there should be at least as

21
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many

,

vectors available for augmentation as the number of underlying sources of

unmodeled spectral variation and these underlying variations must be present in varying

proportions in the added vectors. The ability to use linear combinations of spectral

shapes in the PACLS algorithm allows us to propose other important applications of the

PACLS method. For example, PACLS might be used to accommodate spectrometer drift

by the use of multiple spectra obtained from a repeat sample. If the repeat sample is

constant in concentration, then changes in the spectra of multiple repeated measurements

of the sample wiI1represent linear combinations of both spectral variations due to

spectrometer drift and insertion effects. Since spectrometer drift can interact with the

sample spectrum, the effect of drift on the spectra can be sample dependent. Thus, it

might be preferable to have the repeat sample at the target concentration of the

calibration. Alternatively, multiple repeat samples at varying concentrations could be

measured. Mean-centered repeat sample spectra obtained separately for each repeat

sample will represent the spectral shapes of the effect of spectrometer drift on different

sample spectra. Since linear combinations of the spectral shapes can also be used in

PACLS independent of their magnitude, noise filtering of the spectral shapes might be

accomplished by perfoqning an eijgenvector analysis of the repeat spectra. The highest

signal-to-noise ratio eigenvectors can be selected as the spectral shapes to add during
.

PACLS prediction to optim-allymodel spectrometer drift.

Of course the accuracy of PACLS predictions will be degraded if there are errors

in the empirically derived spectral shapes. The effect of errors in the empirical shapes on

the PACLS predictions will be investigated in the future through Monte Carlo

simulations. In addition, each shape added will reduce the net analyte si=~d- (unless it is

. .
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orthogonal to the shape of the analyte) which will serve to degrade analysis sensitivity.

However, the degradation is expected to be no more than if the same source of spectral

variation were included in the original calibration.

We have implemented the software such that the spectral shapes can b; added

both in cross validation as well as in true prediction. Adding all known shapes during

cross-validated calibration allows the most realistic estimates of PACLS prediction

ability to be determined. In addition, outlier detection is enhanced since spectrai

residuals are reduced when adding spectral shapes during cross-validated calibrations.

Smaller spectral residuals will improve the spectral F tests by reducing the denominator

of the F ratio making. the F test more sensitive to smaller changes in spectral residuals.

Finally, the PACLS can be made even more useful and flexible if the spectral and

concentration residuals in CLS calibration are passed to a PLS algorithm to model all

those sources of spectrai variation that are not included in the CLS calibration or the

PACLS predication. The resuiting PACLWPLS hybrid algorithm offers a potentially

sib~ificant improvement to the

in future papers.
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Table 1. Cross-validated CLS predictions of analytes in constant- and variable-

temperature calibration data including all analytes, water, and time in the CLS

calibration,

Constant-Temperature Data Variable-Temperature Data

AnaIyte CVSEP (mg/dL) R2 CVSEP (mg/dL) Rz

Urea 66 0.9954 60 0.9962

Creatinine 54 0.9960 36 0.9982

NaCl 59 0.9959 51 0.9978

Temperature NA NA 0.11 “c 0.9961
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Table II. Cross-validated CLS predictions of analytes in constant-temperature calibration

data including only single analyte and time in the CLS calibration
vs. PACLS with other

two analytes and water pure components added.

CM

Analyte

Urea

Creatinine

NaCl

CVSEP
I R2

603 0.628

1386 0

324 0.880

PACLS -

CVSEP
I Rz

62 0.9960
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Table III. CLS predictions of analytes in variable-temperature data using a constant-

temperature CLS model that included ail three

calibration.

analytes, water, and time in the

Variable-Temperature Predictions .

Analyte SEP (mg/dL) BCSEP Bias Rz

Urea 599 498 345 0.602

Creatinine 187 115 -149 0.948

NaC1 163 160 M’ 0.967
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Table IV. PACLS predictions of variable-temperature spectra using a PACLS model that

includes all three analytes,

prediction step augmented

water, aid time in the CLS”calibration with the PACLS

by the CLS estimates of temperature and linear drift spectral

shapes from variable-temperature pure-water solvent data.

Variable-Temperature Predictions

Analyte SEP (mg/dL) BCSEP Bias Rz

Urea “60 60 11 0.9960

Creatinine 108 82 -71 0.9830

NaCl 94 60 -73 0.9889
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Table V. PACLS predictions of 26 variable-temperature spectra using a PACLS model

that includes all three analytes, water, and time in the CLS calibration with the PACLS

prediction step augmented by the spectral shapes of the 5 subset difference spectra

(variable-temperature minus constant-temperature spectra).

Variable-Temperature Predictions

Analyte SEP (mg/dL) BCSEP Bias Rz

Urea 36 36 -lo 0.9985

Creatinine 27 27 5 0.9990

NaCl 47 47 ~ 0.9971
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FIGURE CAPTIONS

Figure 1. Schematic diagram of the PACLS prediction for a single unknown sample

spectrum. Augmented concentrations are noted with underlining. Augmented spectral

shapes are represented as dashed lines. Note that the spectra on the right-hand-side of the
*

diagram are presented as columns (vertical) since the matrix is transposed.

Figure 2. Spectra of the 31 variable-temperature samples, a) absorbance spectra and b)

mean-centered absorbance spectra.

Figure 3. Cross-validated CLS predictions for urea for the31 constant-temperature

samples including urea, creatinine, NaCl, HzO, and time of data collection in the CLS

calibration. Solid line is line of identity.

Figure 4. Cross-validated CLS predictions for urea for the31 constant-temperature

samples including only urea and time of data collection in the CLS calibration. Solid

is line of identity.

Figure 5. CLS-estimated pure-component spectra from the 31 variable-temperature

line

samples including urea, creatinine, NaCl, HZO,temperature, and time of data collection

in the CLS calibration. The pure-component spectra are: a) HZO,b) urea, c) creacinine.

d) NaCl, and e) temperature. The four analytes are estimates of the pure-component
.

spectra at concentrations of 1 mg/dL and the temperature pure-component estimate

represents the spectral changes in the solution for a 1 millidegree C change in

temperature.

Figure 6. CLS estimated pure-component spectrum of urea from variable-temperature

data for a) case with only urea concentrations included in the CLS calibration (scaIed by

0.0 1), b) case with urea, creatinine, NaCl, H20, and time of data collection @eluded in

31
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the CLS calibration. c) Net analyte signal calculated for urea using urea pure component

in Fig. 6a and d) Net analyte signal calculated for urea using urea pure component in Fig.

6b. All spectra except d are shifted for clarity.

Figure 7. CLS predictions for urea for the31 variable-temperature samples b-&edon a

CLS calibration of the31 constant-temperature sample data including urea, creatinine,

NaCl, H20, and time of data collection in the CLS calibration. Solid line is Iine of

identity.

Figure 8. PACLS predictions for urea for the31 variable-temperature samples based on

a CLS calibration of the 31 constant-temperature sample data including urea. creatinine,

NaC1,HZO,and time of data collection in the CLS calibration and 5 subset sample

spectral differences added in PACLS prediction. Solid line is line of identity.

Figure 9. PACLS predictions for temperature for the31 variable-temperature samples

based on a CLS calibration of the31 constant-temperature sample data including urea,
. .....

creatinine, NaCl, HZO,and time of data collection in the CLS calibration and 5 subset

sample spectral differences at 23 ‘C and the temperature of water pure component added

in PACLS prediction. Solid line is line of identity.
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