Advanced hot gas filter development. Topical report, May 1995--December 1996

PDF Version Also Available for Download.

Description

Porous iron aluminide was evaluated for use as a particulate filter in pressurized fluid-bed combustion (PFBC) and integrated gasification combined cycles (IGCC) with a short term test. Three alloy compositions were tested: Fe{sub 3}Al 5% chromium (FAL), Fe{sub 3}Al 2% chromium (FAS) and FeAl 0% chromium. The test conditions simulated air blown (Tampa Electric) and oxygen blown (Sierra Pacific) gasifiers with one test gas composition. Four test conditions were used with hydrogen sulfide levels varying from 783 ppm to 78,3000 ppm at 1 atmosphere along with temperatures ranging between 925 F and 1200 F. The iron aluminide was found capable ... continued below

Physical Description

87 p.

Creation Information

Hurley, J.L. & June, M.R. December 31, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Porous iron aluminide was evaluated for use as a particulate filter in pressurized fluid-bed combustion (PFBC) and integrated gasification combined cycles (IGCC) with a short term test. Three alloy compositions were tested: Fe{sub 3}Al 5% chromium (FAL), Fe{sub 3}Al 2% chromium (FAS) and FeAl 0% chromium. The test conditions simulated air blown (Tampa Electric) and oxygen blown (Sierra Pacific) gasifiers with one test gas composition. Four test conditions were used with hydrogen sulfide levels varying from 783 ppm to 78,3000 ppm at 1 atmosphere along with temperatures ranging between 925 F and 1200 F. The iron aluminide was found capable of withstanding the proposed operating conditions and capable of giving years of service. The production method and preferred composition were established as seamless cylinders of Fe{sub 3}Al 2% chromium with a preoxidation of seven hours at 1472 F.

Physical Description

87 p.

Notes

OSTI as DE98058690

Source

  • Other Information: PBD: [1997]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98058690
  • Report No.: DOE/MC/31215--02
  • Grant Number: AC21-95MC31215
  • DOI: 10.2172/665889 | External Link
  • Office of Scientific & Technical Information Report Number: 665889
  • Archival Resource Key: ark:/67531/metadc708296

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 10, 2015, 6:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hurley, J.L. & June, M.R. Advanced hot gas filter development. Topical report, May 1995--December 1996, report, December 31, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc708296/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.