Photoacoustic Measurements in Brain Tissue

PDF Version Also Available for Download.

Description

In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

Physical Description

Medium: P; Size: vp.

Creation Information

Kasili, P.M.; Mobley, J. & Vo-Dinh, T. September 19, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

Physical Description

Medium: P; Size: vp.

Notes

OSTI as DE00006868

Source

  • Environmental Sensors and Remediation, Boston, MA (US), 09/19/1999--09/22/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-102904
  • Report No.: KP 11 03 01 0
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 6868
  • Archival Resource Key: ark:/67531/metadc708261

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 19, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Aug. 3, 2016, 1:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kasili, P.M.; Mobley, J. & Vo-Dinh, T. Photoacoustic Measurements in Brain Tissue, article, September 19, 1999; (digital.library.unt.edu/ark:/67531/metadc708261/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.