CF, CF{sub 2} and SiF Densities in Inductively Driven Discharges Containing C{sub 2}F{sub 6}, C{sub 4}F{sub 8} and CHF{sub 3}

PDF Version Also Available for Download.

Description

Laser induced fluorescence was used to measure the spatially resolved CF, CF{sub 2} and SiF radical density in inductively driven discharges containing fluorocarbon gases. Measurements of the spatially resolved CF density were performed in C{sub 2}F{sub 6} and CHF{sub 3} containing discharges as functions of inductive power, pressure and bias condition on a silicon substrate. In addition, CF rotational temperatures were calculated, assuming saturated spectra. Measurements of the spatially resolved CF{sub 2} and SiF density were performed in C{sub 4}F{sub 8}, C{sub 2}F{sub 6} and CHF{sub 3} containing discharges as functions of inductive power, pressure and bias condition. SiF rotational ... continued below

Physical Description

41 p.

Creation Information

HEBNER,GREGORY A. June 12, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Laser induced fluorescence was used to measure the spatially resolved CF, CF{sub 2} and SiF radical density in inductively driven discharges containing fluorocarbon gases. Measurements of the spatially resolved CF density were performed in C{sub 2}F{sub 6} and CHF{sub 3} containing discharges as functions of inductive power, pressure and bias condition on a silicon substrate. In addition, CF rotational temperatures were calculated, assuming saturated spectra. Measurements of the spatially resolved CF{sub 2} and SiF density were performed in C{sub 4}F{sub 8}, C{sub 2}F{sub 6} and CHF{sub 3} containing discharges as functions of inductive power, pressure and bias condition. SiF rotational temperatures were also estimated. As the induction coil power was increased, the SiF density in the center (r = 0 cm) increased while the CF{sub 2} density decreased and the CF density slightly decreased. In all cases, the radical density in the center of the glow increased with pressure changes from 5 to 30 mTorr while changes in the bias power had little influence on any of the measured radical densities. The spatial distribution of the CF and SiF density peaked in the center of the discharge. The CF{sub 2} density had a local maximum in the center of the plasma with a decreasing density at the edge of the glow. However, the CF{sub 2} density outside the glow region was a factor of 2--6 higher than the density inside the glow region, depending on the gas. CF and SiF rotational temperatures were between 450 and 750 K.

Physical Description

41 p.

Notes

OSTI as DE00759854

Medium: P; Size: 41 pages

Source

  • Journal Name: Journal of Applied Physics; Other Information: Submitted to Journal of Applied Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-1489J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 759854
  • Archival Resource Key: ark:/67531/metadc708216

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 12, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 3:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

HEBNER,GREGORY A. CF, CF{sub 2} and SiF Densities in Inductively Driven Discharges Containing C{sub 2}F{sub 6}, C{sub 4}F{sub 8} and CHF{sub 3}, article, June 12, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc708216/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.