Chemical bonding in hard boron-nitride multilayers

PDF Version Also Available for Download.

Description

The oxides and nitrides of boron show great potential for use as hard, wear resistant materials. However, large intrinsic stresses and poor adhesion often accompany the hard coatings as found for the cubic boron-nitride phase. These effects may be moderated for use of a layered structure. Alternate stiff layers of boron and compliant layers of nitride are formed by modulating the sputter gas composition during deposition of boron target. The B/BN thin films are characterized with transmission electronic microscope to evaluate the microstructure, nanoindentation to measure hardness and ex-ray absorption spectroscopy to determine chemical bonding. The effects of layer pair ... continued below

Physical Description

16 p.

Creation Information

Jankowski, A.F. & Hayes, J.P. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The oxides and nitrides of boron show great potential for use as hard, wear resistant materials. However, large intrinsic stresses and poor adhesion often accompany the hard coatings as found for the cubic boron-nitride phase. These effects may be moderated for use of a layered structure. Alternate stiff layers of boron and compliant layers of nitride are formed by modulating the sputter gas composition during deposition of boron target. The B/BN thin films are characterized with transmission electronic microscope to evaluate the microstructure, nanoindentation to measure hardness and ex-ray absorption spectroscopy to determine chemical bonding. The effects of layer pair spacing on chemical bonding and hardness are evaluated for the B/BN films.

Physical Description

16 p.

Notes

INIS; OSTI as DE98050876

Other: FDE: PDF; PL:

Source

  • Diamond 1997, Edinburgh (United Kingdom), 3-8 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98050876
  • Report No.: UCRL-JC--127545
  • Report No.: CONF-9708142--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 647016
  • Archival Resource Key: ark:/67531/metadc708102

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 2:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jankowski, A.F. & Hayes, J.P. Chemical bonding in hard boron-nitride multilayers, article, June 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc708102/: accessed November 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.