Mechanical failure characterization of optical components caused by laser induced damage initiated at contaminants

PDF Version Also Available for Download.

Description

The goal of this research is to quantify by numerical techniques the effects of surface and subsurface absorbing defects on damage initiation and growth in high power laser optical components. The defects include laser absorbing spots (e.g., surface particulate contamination) and surface damage regions (e.g., micro-cracks and voids) which are present due to environmental exposure and fabrication processes. This report focuses on three sources of contamination that can cause damage to optical components: (1) Front surface particle contamination, (2) Back surface particle contamination, and (3) Subsurface particle contamination. The DYNA2D (non-linear structural mechanics) code was used to model the growth ... continued below

Physical Description

47 p.; Other: FDE: PDF; PL:

Creation Information

Faux, D. R. December 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this research is to quantify by numerical techniques the effects of surface and subsurface absorbing defects on damage initiation and growth in high power laser optical components. The defects include laser absorbing spots (e.g., surface particulate contamination) and surface damage regions (e.g., micro-cracks and voids) which are present due to environmental exposure and fabrication processes. This report focuses on three sources of contamination that can cause damage to optical components: (1) Front surface particle contamination, (2) Back surface particle contamination, and (3) Subsurface particle contamination. The DYNA2D (non-linear structural mechanics) code was used to model the growth of damage in the glass substrate. The damage in the nominally transparent glass substrate as a result of front surface particle contamination was found to be dependent on the magnitude of the resultant pressure pulse applied to the particle and the initial area of contact between the particle and glass substrate. The pressures generated from a back surface particle being blown off the surface provided sufficient loading to severely damage (crack) the glass substrate. A subsurface Ceria dioxide particle showed a strong surface interaction that influenced the formation and direction of the damage (cracking) that ultimately resulted in the blow-out of the damaged material leaving a relatively clean crater in the glass. Crater shape and size was determined. Since fused silica is the most transparent, and therefore laser damage resistant, of the optical materials, it is used for the most at-risk optical elements. The present studies are for a fused silica substrate. Some oxides such as Ceria are transparent in the infrared and visible, but absorbing in the UV part of the spectrum. Because ICF lasers like NIF use frequency tripling, effects of such oxides must be included.

Physical Description

47 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98058621

Source

  • Other Information: PBD: 1 Dec 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98058621
  • Report No.: UCRL-ID--128908
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/675033 | External Link
  • Office of Scientific & Technical Information Report Number: 675033
  • Archival Resource Key: ark:/67531/metadc708044

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 17, 2016, 2:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Faux, D. R. Mechanical failure characterization of optical components caused by laser induced damage initiated at contaminants, report, December 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc708044/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.