Guiding of High Intensity Ultrashort Laser Pulses in Plasma Channels Produced with the Dual Laser Pulse Ignitor-Heater Technique

P. Volfbeyn and W.P. Leemans
Accelerator and Fusion Research Division

July 1998
Presented at the Advanced Accelerator Concepts 8th Workshop, Baltimore, MD, July 5–11, 1998, and to be published in the Proceedings
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Guiding of High Intensity Ultrashort Laser Pulses in Plasma Channels Produced with the Dual Laser Pulse Ignitor-Heater Technique

P. Volfbeyn and W.P. Leemans

Center for Beam Physics
Accelerator and Fusion Research Division
Ernest Orlando Lawrence Berkeley National Laboratory
University of California
Berkeley, California 94720

Presented at the
Advanced Accelerator Concepts 8th Workshop
Baltimore, Maryland
July 5-11, 1998

July 1998

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Guiding of High Intensity Ultrashort Laser Pulses in Plasma Channels Produced with the Dual Laser Pulse Ignitor-Heater Technique.

P. Volfbeyn and W. P. Leemans,

LBNL, Berkeley, CA 94720

Abstract. We present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor – Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (<100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a >5x10^{17} W/cm², 75 fs laser pulse.

1 INTRODUCTION

Since the original proposal of laser driven plasma accelerators [1], where it was proposed that plasma waves with extremely high longitudinal electric fields and with phase velocity close to the speed of light can be excited by ponderomotive pressure of a laser pulse, the field has progressed past the proof-of-principle stage (for a recent review see E. Esarey et al. [2]).

The most severe limit on the energy gain in a homogeneous plasma LWFA is laser diffraction. To reach the high intensities needed for plasma wave excitations, on the order of 10^{18} W/cm², the laser pulse (or pulses) must be focused to spotsizes on the order of several laser wavelengths. In order for laser acceleration to achieve higher energies, the laser beam must remain tightly focused over distances of many Rayleigh ranges (diffraction distance in vacuum).

Laser guiding in plasma channels has been proposed [3] as a means to extend the distance over which the laser remains intense. The index of refraction in a plasma of density n can be approximated by \(\eta_R = 1 - \omega_p^2 / 2 \omega^2 \). As in an optical
fiber, a plasma channel can provide optical guiding if the index of refraction peaks on axis. This requires a plasma density profile that has a local minimum on axis.

Experimentally, laser pulses have been guided in plasma channels [4]. In these experiments one laser pulse (~100 ps, ~100 mJ) was brought to a line focus in a mixture of high atomic number (Z) gases with an axicon lens to produce a few cm long plasma, and subsequently heat it via inverse Bremsstrahlung. The resulting hydrodynamic expansion led to a time-dependent density profile with a minimum on-axis. Pulse propagation over distances of up to 70 Rayleigh lengths (about 2.2 cm) of moderately intense laser pulses (<5x10^{14} W/cm^2), with pulse lengths much larger than the plasma period, was demonstrated in these experiments. The intensity of the channel creation laser pulse, achieved in these experiments was not sufficient for ionization of low Z gases, but required instead the use of high Z gases. Unfortunately, in channels produced with high Z gases, an ultra-intense pulse would further ionize the gas on the channel axis, thereby negating the guiding. While the 100ps long laser pulse was energetic enough to cause significant plasma heating, ionization of low Z atoms requires an order of magnitude higher laser intensity. The intensity of the laser pulse, needed for channel creation in hydrogen, for instance, has to be ~1.5x10^{14} W/cm^2 [5]. It is important to note that once partial ionization has occurred, and plasma heating through inverse Bremsstrahlung takes place, collisional ionization plays a significant role as an additional mechanism for plasma creation. For low laser intensities the inverse Bremsstrahlung rate is independent of the laser intensity [6]. When the electron quiver velocity due to the laser field exceeds the thermal velocity, the heating crosssection drops precipitously [7]. The optimum intensity for plasma heating is on the order of 1-2x10^{13} W/cm^2 [6]. Ionizing the gas and subsequently heating it with one pulse is inefficient.

To allow the use of low Z atoms and to demonstrate the feasibility of guiding of the highly intense laser pulses over many Rayleigh ranges we have developed a novel method for channel production: the Ignitor - Heater technique. Rather than utilizing a single laser pulse for ionization and heating, this scheme makes use of two laser pulses. A femtosecond "Ignitor" pulse is used to create the initial spark. A longer, ~160 ps, perfectly time synchronized "Heater" pulse is then introduced to heat the plasma. Results of Ignitor – Heater channel production experiments and measurements of the channel transverse plasma density profile with femtosecond Mach-Zehnder interferometry will be presented in Section 2. Results of guiding studies are reported in Section 3.
2 CHANNEL PRODUCTION

To implement the Ignitor-Heater channel creation scheme, the two laser pulses were combined in a line-focus by means of cylindrical optics onto a gas jet, Figure 1.

A gas jet was used to avoid ionization induced refraction [8] in a statically filled experimental chamber. The femtosecond intense (~5 × 10^{14} \text{ W/cm}^2) Ignitor pulse was focused to a line by reflecting off a cylindrical reflector. The cylindrical reflector is a plano-concave (R=38 mm) cylindrical lens, coated with a dielectric high reflection coating for 45° angle of incidence 800 nm radiation. By using a reflective optic we have avoided beam filamentation, self-focusing, and other undesirable nonlinear effects that would prevent from obtaining a well focused, near diffraction limited beam spot. The Heater pulse was focused with an F/5 refractive cylindrical lens (focal length f=50mm) at the exact location of the ignitor focus.

In addition to the fact that the channel forming beams propagate perpendicularly to the guided pulse, the use of two independent cylindrical optics provides precise independent adjustment of both the positions, angles of incidence, and sizes of the line foci.

Figure 1. Experimental Setup
A Mach-Zehnder type interferometer with a measured spatial resolution of 4 \mu m was built to measure line integrated plasma density. This interferometer measures...
the relative spatial phase shift between two blue (400 nm) 50 fs pulses, one propagating through plasma and one through air. These pulses are produced by frequency doubling and are perfectly synchronized with the high power beams used in plasma production. The evolution of the 2-D transverse plasma density profile can be measured with a temporal resolution determined by the duration of the blue pulse.

The Ignitor-Heater scheme was implemented with 20-40 mJ, 75 fs Ignitor pulse and ~270 mJ, 160 ps Heater pulse in nitrogen and hydrogen backed gas jet. Figure 2 a) shows an interferogram taken with the interferometer pulse delayed by 1 ns with respect to the Heater pulse. The X-size of the channels roughly corresponds to the Rayleigh range of the Ignitor pulse. From the inferred plasma density lineouts of Figure 2 b), it is seen that a plasma channel is created only in the vertical direction. These channels are expected to guide in Y-direction only.

From the interferograms of the plasma channels, the shock front diameter, D, is found by measuring the separation (in Y) between the points of commencement of the fringe shifts in the middle section of the channel. From the channel size and density dynamics, the initial temperature of the spark is inferred in two ways. By equating the shock speed to ion acoustic speed, the electron temperature can be found. From Sedov’s solution of strong explosion in a homogeneous atmosphere [9], a theoretical calculation that relates the energy per unit length in the initial

\[
E \approx \frac{1}{3} \rho S^2 d \left(\frac{d}{X} \right)^{1/3}
\]

Figure 2. a) Channel interferogram at 1 ns after the heater pulse; b) Inferred plasma density lineouts.

spark to the form of the expansion curve, the temperature can be calculated once again. From the shock speed, the initial temperatures (right after the Heater pulse) are calculated to be ~20 eV and ~120 eV in hydrogen and nitrogen respectively. This agrees well with the deposited energy calculation from Sedov’s solution.
From the inverse Bremsstrahlung theory [7], in hydrogen, with \(n = 2 \times 10^{18} \) cm\(^{-3} \), laser \(I = 7 \times 10^{12} \) W/cm\(^2\), and laser pulse duration \(\tau = 150 \) ps, the temperature was calculated to be \(T_e = 19 \) eV. In nitrogen, with \(n = 1.6 \times 10^{18} \) cm\(^{-3} \), \(\langle Z \rangle = 3.5 \), and the same laser parameters, the temperature was calculated to be \(T_e = 118 \) eV.

3 GUIDING

This Section describes the results of experiments on guiding high intensity laser pulses in the plasma channel. The laser pulse (injection pulse) was focused near the entrance of the channel using an off-axis parabola. The time delay between the Ignitor pulse and the injection pulse was fixed to 600 ps. (This constraint arose from physical limitations in the available vacuum chamber.)

To diagnose the guiding, the laser beam was imaged onto a CCD camera with a MgF\(_2\) lens of 1 inch diameter and focal length of \(f = 68.3 \) mm at 800 nm. The CCD camera was mounted on an optical rail so that it could be moved over about 50 cm range, thus changing the position of the imaging plane. The resolution and magnification of the imaging system was calibrated for different CCD camera locations. By comparing the laser beam images with and without the gas flowing out of the gas jet (valve pulsing or not), it was possible to clearly observe the effect of guiding on the laser beam.

![Image of laser beam images and vertical lineouts](image)

Figure 3. Laser beam images and vertical lineouts. Pulse a) gas jet turned off, b) gas jet - on, without Heater pulse, and c) guided by the channel, gas jet backed with nitrogen at 1000 psi.

Figure 3 shows images of the injection laser pulse a) propagating through vacuum (gas jet turned off), b) after undergoing ionization induced refraction in the gas jet plume without the Heater pulse being present, hence no channel...
formed, and c) guided by the channel, for a gas jet backed with nitrogen at 1000 psi. Vertical lineouts of images of Figure 3 clearly demonstrate the changes induced by the plasma channel on the guided laser pulse. The change in size of ~8 times is consistent with a laser beam of $Z_r \sim 0.1$ mm propagating a distance of 0.8 mm (the width of the jet).

As seen in Figure 2, for the specific Ignitor and Heater pulse parameters, plasma channels were created in an elongated, elliptical shape. In turn, the guided beam images (Figure 3) had a similar elongated shape. Through control of the Ignitor pulse intensity, channels with circular cross-sections, possessing guiding properties in X as well as in Y direction, can be created [6].

A study of the guided beam image vs. the CCD camera position is used to find the guiding length and to prove that, as the gas jet is displaced, the guided beam waist is shifted accordingly.

![Graph](image)

Figure 4. Changes in best camera position for imaging the guided lobe (vertical spotsize at minimum) vs. Gas Jet position. The line in the plot is drawn at 45° to the axes.

The guided laser beam size was measured vs. z by moving the CCD camera. Measurements were performed at two different gas jet z-positions, z=0.59 mm and z=1.02 mm. The positions of the vertical waist (smallest vertical spotsize) in the two cases are ~0.9 mm and 1.25 mm respectively (while the waist position of the injection beam in vacuum is at z=0 mm). The change in the waist position is in agreement with the measured gas jet size of FWHM=0.8 mm.

A set of data was taken for several different gas jet z-positions. The CCD camera was set at the point of smallest vertical spotsize for each gas jet z-position. The corresponding object plane locations were then plotted vs. the gas jet z-positions. The resultant graph is shown in Figure 4. This clearly shows that moving the gas jet moves the beam waist.
3.1 Mode Coupling and Propagation in Realistic Plasma Channels

A plasma channel with a parabolic density profile with infinite radial extent, \(\Delta n_p = \Delta n r^2 / \sigma_0^2 \), supports a Gaussian guided mode \(\alpha^2 \propto \exp(-2r^2 / \sigma_0^2) \), provided that the channel depth satisfies \(\Delta n = \Delta n_c \), where \(\Delta n_c = (\omega_c e_0^2)^{-1} \). If the injection is done with a perfectly Gaussian laser beam focused to a waist size of \(r_0 \) at the channel entrance then 100% of the injection laser energy will couple into the guided mode. If a perfectly Gaussian laser beam is not at its waist at the channel entrance, or if the waist size is different from the guided mode size for that particular channel, a corresponding fraction of the laser energy will couple to higher order modes in the channel. This loss mechanism we will refer to as the coupling loss.

Another loss mechanism in a realistic channel results from the laser tunneling through the channel walls. Experimentally created channels do not have infinitely high walls. Rather, as the profile in Figure 2 b), the channel walls will reach a peak height and then fall off rapidly as shown in Figure 5.

![Figure 5. Schematic of a realistic plasma channel profile.](image)

In our experiments, the channel depth, width, and wall thickness at 600 ps after ignition were \(\Delta n_{ch} = 1.5 \times 10^{18} \text{ cm}^{-3} \), \(n_b = 7 \times 10^{18} \text{ cm}^{-3} \), \(x_{ch} = 8 \mu \text{m} \), and \(\Delta x = 3 \mu \text{m} \) respectively. In such a channel there are no bound modes. The laser can leak out through the finite thickness walls, coupling to the continuum outside the channel. The degree of this leakiness depends on the channel depth, \(\Delta n_{ch} \), width, \(2x_{ch} \), and the wall thickness, \(\Delta x \). The leakage loss is much larger for higher order modes, and any power not coupled into the fundamental mode of the channel is rapidly lost. Because of the finite transverse extent of the channel, peripheral parts of the
laser pulse may miss the plasma all-together, spilling outside the channel, the spillage.

The loss due to leakage can be estimated [6], assuming that the channel mode is close to the fundamental mode of the infinite wall channel. By calculating the leakage exponent of the evanescent mode within the channel wall from the paraxial wave equation, the energy loss from the guided mode through tunneling is estimated to be ~ 35%.

As the gas jet is moved further away from the laser focus, the mode coupling into the channel worsens, i.e. larger portions of the injected laser energy are not coupled into the channel, but rather spilled outside the channel. Quantitatively, the image intensity integral is a measure of the laser energy. By taking intensity integrals of the CCD images, we will compare the amount of the laser energy guided by the channel to the total intensity integral of the CCD image (full beam energy, E_{full}) and the image intensity integral of the vacuum propagated beam (E_{vacuum}). The intensity integral of the isolated central lobe of the images is taken to be the guided energy.

![Figure 6. Ratio of energy in the central lobe or guided, E_g, to that of the full beam, E_{full}, plotted vs. the gas jet position.](image)

The ratio of the guided energy, E_g, to the total image intensity integral, E_{full} is shown in Figure 6. As expected, the fraction of the laser beam that is coupled into the channel is larger as the injection pulse focus is moved closer to the jet's edge than when the gas jet is moved further away from the laser focus position in vacuum. It should be noted that the F-numbers of the off-axis parabola and the
imaging MgF$_2$ lens are rather close and the collection angle is limited. Nevertheless, the leakage of the fundamental mode of the plasma channel is fully collected.

As the laser waist is moved closer to the channel entrance, the laser spotsize becomes comparable with the channel size and most of the power is coupled to the modes of the channel. The ratio of E_g to the E_{full} approaches $\sim60\%$. This number is in good agreement with previous results where the leakage fraction was calculated to be $\sim35\%$ (i.e. $E_g/E_{full} \sim 65\%$).

4 CONCLUSIONS

To overcome the laser diffraction length limit, a novel method of plasma channel production for laser guiding, the Ignitor - Heater technique, was proposed and tested experimentally. This scheme made it possible, to create preformed guiding plasma channels in hydrogen and deeply ionized nitrogen without high atomic number additives, thereby allowing high intensity laser pulse guiding. To avoid the ionization induced refraction of the guided laser pulse, the plasma channels were formed in a plume of a pulsed gas jet. It should be also noted that the Ignitor - Heater scheme employs cylindrical optics that could be kept out of the path of the accelerator beam and, potentially, allow the recycling of the laser beams. The channel formation process was fully characterized with time resolved 2-D longitudinal interferometry diagnostic using a femtosecond probe pulse. From the measured dynamics of the radial shock expansion, the temperature and energy of the heated plasma were calculated. The ability to independently control the intensity of the Ignitor pulse allowed us to control the transverse extent of the initial ionization spark. The length of the initial spark affected the shape of the plasma channel. In this fashion channel transverse aspect ratio was controlled from ~3 to ~10. Future work will concentrate on further improving this aspect ratio.

Laser pulses at record high intensity ($\sim5 \times 10^{17} \text{ W/cm}^2$) were guided in these channels over ~10 Rayleigh lengths. Control over the channel shape allowed us to observe guiding in one transverse dimension, for channels with high aspect ratio, or guiding in both X and Y, if a round channel was formed.

Insertion losses were measured as functions of the gas jet position with respect to the vacuum focus position of the injection laser pulse. Spillage and leakage mechanisms were found to agree well with the theoretical predictions.
REFERENCES