S-HARP: A parallel dynamic spectral partitioner

PDF Version Also Available for Download.

Description

Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Message ... continued below

Physical Description

20 p.

Creation Information

Sohn, A. & Simon, H. January 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Sohn, A. New Jersey Inst. of Tech., Newark, NJ (United States). Dept. of Computer Science
  • Simon, H. Lawrence Berkeley National Lab., CA (United States)

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Message Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.

Physical Description

20 p.

Notes

OSTI as DE98052654

Source

  • ACM symposium on parallel algorithms and architectures, Puerto Vallarta (Mexico), 28 Jun - 2 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98052654
  • Report No.: LBNL--41348
  • Report No.: CONF-980637--
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 650345
  • Archival Resource Key: ark:/67531/metadc708010

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 5, 2016, 5:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sohn, A. & Simon, H. S-HARP: A parallel dynamic spectral partitioner, article, January 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc708010/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.