QCD and Heavy Flavor Physics at High Energy

F. Bedeschi
For the CDF Collaboration

INFN-Sezione di Pisa
via Livornese 1291, I-56010 S. Piero a Grado (Pisa), Italy

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

May 1999

Published Proceedings of the 34th Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, March 19-20, 1999
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under contract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purposes.
QCD AND HEAVY FLAVOR PHYSICS AT HIGH ENERGY

F. BEDESCHI
INFN-Sezione di Pisa, via Livornese 1291,
I-56120 S. Piero a Grado (Pisa), Italy
E-mail: bedeschi@axpia.pi.infn.it

This talk summarizes recent results from the Tevatron Collider and HERA on QCD
and Heavy Flavor physics

1 Introduction

This talk covers recent results obtained at the Fermilab Tevatron by the CDF and
D0 collaborations and at HERA by the H1 and ZEUS collaborations on the subject
of QCD and Heavy Flavor physics.

At the Tevatron Collider a 900 GeV proton beam collides with a 900 GeV
anti-proton beam leading to a total center-of-mass energy of 1.8 TeV, the highest
currently available. The bulk of the data collected by the CDF and D0 experiments
has been recorded during Run I of the Tevatron, with each experiment accumulating
on the order of 100 pb$^{-1}$. The Tevatron is currently undergoing major changes to
increase its luminosity by more than one order of magnitude. It is expected to
start running again sometimes early in the year 2000 with the goal of integrating
~ 2 fb$^{-1}$ in a couple of years.

At HERA 27.5 GeV positrons collide on 820 GeV protons for a center-of-mass
energy of about 300 GeV. The analyses reported here by the H1 and ZEUS ex-
periments are based on a set of data collected from 1994 till 1997 corresponding
to about 40-50 pb$^{-1}$ per experiment. The high end of the Q^2 range and proton x
explored by HERA overlaps with the Tevatron range. This implies some level of
interplay between the measurements at the two machines. The HERA machine will
approximately double the statistics in the years 1998-99 running in the electron/
proton mode. Further upgrades will allow in the year 2000 delivery of about 150
pb$^{-1}$/year per experiment and the use of polarized electron/positron beams.

2 QCD

This section is a summary of the QCD talks and, also, topics of heavy flavor and
vector boson production cross sections, even if they were presented in the heavy
quark or electro-weak physics sessions.

2.1 Inclusive distributions

The predictions of QCD are in general quite successful at high Q^2, since the coupling
constant becomes smaller and higher order corrections are consequently less impor-
tant. Inclusive cross section measurements both at the Tevatron and at HERA
show an impressive agreement between experiment and theory over a large range of
Q^2 corresponding to a cross section variation of many orders of magnitude. Devia-
tions from the expected behavior would be very interesting since they could signal
the emergence of new physics. The inclusive jet cross sections recently measured
by CDF 1 and D0 2 with the full run 1 statistics and the combined H1 and ZEUS
neutral and charged current cross sections, including all 1997 data, are shown in
fig. 1 and fig. 2. A closer look at these results can be obtained by plotting on a
linear scale the ratio of the difference between data and theory over the theory or
just the ratio of data over theory. These comparisons show a rise above what is
expected from theory in the high end region of the spectrum for the CDF data.
Such a rise is not observed in the D0 data. A direct comparison of CDF and D0
jet cross sections is shown in fig. 2. Except for a small normalization shift, the two
experiment are in agreement once systematic errors are taken into account. These
comparisons are sensitive to the choice of parton distribution function (pdf), as
shown by the right plot of fig. 1; CTEQ4HJ, which has an enhanced gluon content
at high x^{3}, is the one preferred by CDF data.

Recent results from ZEUS and H1 4 do not show anymore the excess at high Q^2
reported in 1997. The present neutral and charged current inclusive cross-sections
are consistent with theory as seen in fig. 2.

2.2 Proton structure

Pdf's are critical in obtaining predictions from QCD calculations. A key role in their
determination is played by deep inelastic scattering measurements. The HERA
experiments, with the use of 1996 and 1997 data, have been able to reduce the
uncertainty in the determination of F_2 to about 3-4%, as shown in fig. 3. This
result now spans 4 orders of magnitude in x and its accuracy is dominated by the
systematics 5. The large statistics available has allowed testing the Q^2 evolution
of the proton structure function from Q^2 of tens of GeV2 to Q^2 ~ 5000 GeV2
and check the extrapolation to fixed target data at lower Q^2. The agreement between
the data and the prediction of the DGLAP evolution equation over a large range
of Q^2 and x is remarkable as shown in the central plot of fig. 3.

At HERA information on the gluon density can be obtained by fits to the F_2

Figure 1. D0 (left) and CDF (center) inclusive jet cross sections as a function of jet E_T; (right) CDF cross section from run 1B data compared to theory with different pdf choices.
evolution, from measurements of di-jet production or from measurements of heavy flavor production. In particular new measurements of D^* production are available from both H1 and ZEUS\(^5\). On the right plot of fig. 3 we see a comparison of the F_2 fit and the results obtained using charm production data as performed by H1. A good understanding of the gluon structure function is very important to compare experiment and theory at HERA and even more at the Tevatron, where most processes involve gluons in the initial state. In particular it would be interesting to further constrain the gluon pdf at high x and high Q^2. We notice that the maximum gluon x reached by the HERA measurements is still in the 10^{-2} range, while the high end of the Tevatron data is sensitive to gluons in the x range 10^{-1}-0.8. This high x region is also covered by fixed target direct photon production\(^6\).

![Figure 2. Comparison between CDF and D0 inclusive jet cross sections (left); neutral current inclusive cross sections at H1 (center) and ZEUS (right) (from the text)](image1)

![Figure 3. (Left) Latest F_2 measurement at HERA, (center) Q^2 evolution of F_2, (right) H1 measurements of the gluon density in the proton compared to the CTEQ4F3 pdf (from the text)](image2)
2.3 Di-jet cross sections

Events where two jets are clearly identified are used at the Tevatron to test the theory at a deeper level. Both experiments have measured the di-jet mass cross section and are in good agreement as shown in fig. 4. The data are consistent, within the systematic errors, with NLO QCD predictions although an excess is seen at high masses. The excess at high masses is consistent with that predicted using the CTEQ4HJ pdf. D0 has used the di-jet mass cross section ratio of $|\eta| < 0.5$ over $0.5 < |\eta| < 1.0$ to test for compositeness, excluding a compositeness scale of 2.4 TeV at the 95% confidence level. This limit is better than the previous results from di-jet angular distributions.

CDF measures the jet cross section as a function of the E_t of one central jet ($0.1 < |\eta| < 0.7$) after requiring that the other jet, with $E_t > 10$ GeV is in one of four possible η ranges. The results are shown in the left plot of fig. 5 compared with NLO predictions using the CTEQ4M, CTEQ4HJ and MRST pdf's. Again we observe a rise at high E_t that is tracked best by CTEQ4HJ. This way of presenting the information directly probes higher x values than the inclusive jet cross section, and isolates much better specific ranges of Q^2 and x. In the right plot of fig. 5 we show the average parton level t and maximum x value for each of the measured
Figure 5. (left) Comparison of the CDF differential di-jet cross section to NLO QCD predictions (right) the parton kinematics reach of the CDF differential analysis. The box in the upper right corner indicates where a possible excess at HERA has been probed.

points. The box in the upper left corner is the region of phase space corresponding to the highest Q^2 which can be probed by the inclusive neutral and charged current distributions at HERA.

D0 has recently presented a similar measurement 7, shown in fig. 6. Relative to the CDF measurement, they also split their data between the case when the central jet is on the same or opposite η side of the probe jet. They use CTEQ4M for their

Figure 6. Comparison of the D0 differential di-jet cross section to NLO QCD predictions: (left) bins $0.0 < |\eta| < 0.5$ and $0.5 < |\eta| < 1.0$, (right) bins $1.0 < |\eta| < 1.5$ and $1.5 < |\eta| < 2.0$.
comparison with theory and do not observe any obvious rise at high E_t.

2.4 Production of W’s and Z’s

The production cross sections of W’s and Z’s are calculated by NNLO QCD to an accuracy of $\sim 5\%$. In fig. 7 we show the measurements of CDF and D0 compared with theory predictions. The accuracy of the experiments and theory are in this case comparable and the agreement is good. It is interesting to notice that the agreement between the measurements of CDF and D0 would be even better if they normalized their luminosity to the same total inelastic cross section.

The production of W’s in association with jets is a very important background
for many high mass searches at hadronic colliders and is a good test of higher order QCD calculations.

CDF has recently measured the ratio, \(R_{10} \), of \(W^{+} \geq 1 \) jet to inclusive \(W \) production using both jet cone of 0.4 and 0.7. The comparison of these measurements with NLO QCD predictions is shown in the left plot of fig. 8 and indicates agreement for both cone sizes. If we plot however the ratio between \(R_{10} \) obtained with a 0.7 cone to that obtained with a 0.4 cone (fig. 8 (right)) we find the CDF data higher than the theory. This may be another indication that jets at the Tevatron are broader than theoretical predictions based on NLO QCD.

2.5 Heavy Flavor Production

The production of heavy flavors is particularly interesting since it introduces another natural scale, the quark mass, into the QCD calculations. For high quark mass, as in the case of the top quark, this scale is very large and QCD predictions have reached a 5% level of accuracy. In the left plot of fig. 9 we show the CDF and D0 measurements compared to various theoretical calculations. Both experiments combine the measurements obtained using different top decay modes and selection criteria to reduce the experimental error: the combined result is \(\sigma_{t} = 5.6 \pm 1.8 \) pb for D0 and \(7.6^{+1.8}_{-1.5} \) pb for CDF. This is to be compared to a range of theory predictions between 4.7 and 5.5. The CDF result is somewhat high, but still consistent within the errors.

The agreement with theory is not as good in the case of \(b \bar{b} \) production. In fig. 9 we show a comparison of the CDF and D0 measurements with the prediction from NLO QCD calculation. While the two experiments agree, these results are about a factor 2.5 higher than the central theory curve. D0 measures

![Figure 9](image-url)

Figure 9. (left) The CDF and D0 top cross sections compared to several calculations; (right) the bottom quark integral production cross section as a function of the minimum b-quark \(p_{T} \). CDF and D0 data compared to NLO QCD predictions.
an even larger discrepancy factor, ~3.6±0.8 in the forward rapidity region. The error however is large enough to be consistent with the central region. In general the problem with b cross sections appears to be that of overall normalization, while the shapes, including correlations between the two b quarks in the event, are well described by higher order QCD \cite{22,20}. It has been shown at this conference that new developments based on the Variable Flavor Number approach could lead to improvements in the agreement with the experiments \cite{23}.

The prompt production cross section of J/ψ's and ψ' has produced considerable interest in the past year after the large discrepancies found at the Tevatron between the experimental observations of ψ and ψ' production \cite{24} and the expectation from color singlet models \cite{25}. New calculations \cite{26} including color octet contributions have improved significantly the agreement with the Tevatron data \cite{27}.

At Hera the agreement of the ψ photo-production cross section with color octet predictions \cite{26} is not as good and requires the introduction of a constituent motion contribution with $k_T \sim 1$ GeV/c to describe the data, as shown in fig. 10, while a NLO color singlet calculation appears to describe the data better \cite{28,29}. ψ's produced at HERA have a much lower p_T than those produced at the Tevatron. Therefore significant perturbative and non-perturbative soft-physics effects could make testing color-octet predictions at HERA particularly difficult \cite{26}. The dependence of J/ψ production at HERA as a function of the available center of mass energy is well described by the NLO calculation \cite{29} and is quite sensitive to the gluon structure function as seen in the right plot of fig. 10.

![Figure 10. (left) J/ψ photo-production cross section as a function of the fraction of γ momentum carried by the J/ψ at HERA; (right) J/ψ photo-production cross section as a function of the c.m. energy of the proton – γ scattering compared to several theoretical models](attachment:figure10.png)
Rapidity gaps are defined as the absence of particles in a certain rapidity region. They are the distinct signature of the exchange of a colorless object, also known as Pomeron in low energy phenomenology. A number of rapidity gap events, in excess of what is expected from fluctuations of processes involving the exchange of colored objects, has been observed both at Hera and at the Tevatron. Special cases of rapidity gap processes are single diffraction and double Pomeron exchange.

Events with rapidity gap exhibit features that suggest a hard Pomeron structure. For instance in fig. 11 we see how di-jet events with a single or double gap have similar jet-E_t distributions as inclusive 2-jet events at the Tevatron. Other features are the diffractive production of W bosons and bottom quarks as observed by CDF.

At Hera both ZEUS and H1 have measured the diffractive structure function $F_2^{D(3)}$. This structure function can be interpreted as the product of a Pomeron flux and a Pomeron structure function, whose Q^2 evolution is determined by the DGLAP equation. Fits to this Q^2 evolution prefer a large gluon fraction in the Pomeron: $\sim 80\%$ at $Q^2 = 75 \text{ GeV}^2$.

Assuming these Pomeron structure functions and factorization one can use this approach to describe diffraction results at the Tevatron. Published CDF results indicate consistency with the large gluon content of the Pomeron, but have otherwise large normalization problems with this interpretation (fig. 11). More recent measurements of diffractive di-jet production with recoil beam particle tagging at CDF allow a direct measurement of the Pomeron structure function and confirm the normalization issue. A better agreement can be found by redefining the Pomeron flux as suggested by some authors, though CDF still observes a steeper E_t distribution of leading two jets (GeV)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{(left) Comparison of E_t distributions of inclusive 2-jet events (no gap), single gap plus jet events and double gap plus jet events as measured by the D0 experiment; (right) the flux discrepancy factor D versus the gluon fraction of the Pomeron. W and di-jet results from CDF as shown along with ZEUS and UA8 results.}
\end{figure}
slopes than HERA at low β, the parton momentum fraction in the Pomeron.

3 Heavy Flavors

3.1 Top quark

The study of top quark at the Tevatron has been extremely successful. CDF and D0 have measured the top quark mass using a variety of techniques and top data subsets. Both experiments derive most of their resolution from the lepton plus jet sample, where one of the two real W's in the event decays semileptonically in the electron or muon channel, while the other W decays into quark pairs. Mass fits to this specific sub-sample are shown in fig. 12 for both CDF and D0; a summary of all results is shown in table 1. We notice how the Tevatron average has a 3% error only. The top mass is an important parameter of the Standard Model, in particular it is needed to constrain the Higgs mass.

The Tevatron experiments have studied several features of top quark production and decay: p_t, η, mass of the $t\bar{t}$ system (fig. 13), W polarization, top-antitop spin correlations. All of these studies suffer from lack of statistics; there are however, within the attainable accuracy, no significant deviations from the Standard Model predictions.

Searches for single top production from both CDF and D0 have so far failed to observe a signal. CDF has set an upper limit of 15 pb to the single top production cross section; this limit is about a factor seven larger than what expected from the

![Figure 12](image-url)
Table 1. Summary of CDF and D0 measurements of the top quark mass

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Top event topology</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>di-lepton</td>
<td>lepton+jet</td>
</tr>
<tr>
<td>D0</td>
<td>168.4±12.8</td>
<td>173.3±7.8</td>
</tr>
<tr>
<td>CDF</td>
<td>167.4±11.4</td>
<td>175.9±7.1</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 13. (left) CDF \(M_T\) distribution. The mass of each top in the event is constrained to the measured CDF average; (right) D0 \(M_T\) distribution. The two plots show the distribution with and without constraining the top mass to the D0 average.

3.2 **Bottom quark**

The physics of the bottom quark has been studied quite extensively at the Tevatron in this and recent years. Beyond the measurement of the production cross sections, which are described in the QCD section, many other b-physics studies have been made. In particular the CDF experiment has exploited in full the large \(b\bar{b}\) cross section available at the Tevatron, thanks to its good magnetic tracking system enhanced with a silicon vertex detector.

In the course of the last year CDF has discovered the \(B_c\) meson \(^{41,42}\), using its decay to \(J/\psi l\nu\). In fig. 14 we show the observed invariant mass distribution of the \(\psi l\) system compared to background expectations. An excess of events is observed with a shape consistent with coming from \(B_c\) decays. A fit to this distribution allows the determination of the meson mass, \(M_{B_c} = 6.4 \pm 0.39 \pm 0.13 \text{GeV}/c^2\). The accuracy of this measurement is limited by the missing neutrino. A more precise
measurement needs fully reconstructed modes which have smaller branching fractions. No unambiguous signal has so far been observed using these decay channels.

Other B_c parameters have also been measured: the lifetime (fig. 14 right plot) and the production cross section relative to that of $B^+ \to J/\psi K^+$. All b-hadron triggers at the Tevatron currently involve leptons. This leads to very good limits on rare decays involving electrons and muons.

In table 2 we show the limits set by CDF and D0 compared to the corresponding results from the CLEO experiment and the Standard Model.

Table 2. Summary of branching fraction limits from the Tevatron experiments compared, when available, to the results of CLEO and expectations from the Standard Model.

<table>
<thead>
<tr>
<th>Process</th>
<th>CDF</th>
<th>D0</th>
<th>CLEO</th>
<th>Stand. Mod. expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0_d \to K^{*0}\gamma$</td>
<td>$<2.9\times10^{-4}$ 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0_d \to \phi\gamma$</td>
<td>$<5.7\times10^{-4}$ 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+_d \to \mu^+e^-$</td>
<td>$<4.4\times10^{-4}$ 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0 \to \mu^+e^-$</td>
<td>$<2.3\times10^{-5}$ 95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0_d \to \mu^+\mu^-$</td>
<td>$<4.0\times10^{-5}$ 90%</td>
<td>$<5.9\times10^{-6}$ 90%</td>
<td>$\sim10^{-10}$ $\sim10^{-9}$</td>
<td></td>
</tr>
<tr>
<td>$B^+_d \to K^+\mu^+\mu^-$</td>
<td>$<5.4\times10^{-6}$ 95%</td>
<td></td>
<td></td>
<td>$\sim2-5\times10^{-7}$</td>
</tr>
<tr>
<td>$B^0_d \to K^{*0}\mu^+\mu^-$</td>
<td>$<4.1\times10^{-6}$ 90%</td>
<td></td>
<td>$<3.2\times10^{-4}$ 90%</td>
<td>5.8×10^{-5} 90%</td>
</tr>
<tr>
<td>$B \to X_s\mu^+\mu^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 15. (left) Charm meson signals from B meson semileptonic decay at CDF. The dashed histograms are the distribution of the candidates with the wrong sign correlation; (center) proper time evolution of the mixing asymmetry using semi-exclusive B samples and same side flavor tagging at CDF; (right) proper time evolution of the like-sign fraction in CDF’s dimuon sample.

expectations whenever they are available. We notice that for these decay modes the Tevatron results are usually better than CLEO and in some cases are getting close to the sensitivity needed to test the predictions of theory, which are very sensitive to contributions from new physics.

The CDF experiment has collected in the course of run I samples of hundreds of exclusive b-hadron decays in channels containing a \(J/\psi \), samples of thousands of semi-exclusive decays (i.e. decays into a lepton, a neutrino and a fully reconstructed charmed meson) and even larger inclusive b-enriched samples. The charm signals in the semi-exclusive samples is shown in fig. 15: a signal is observed only when the charmed meson has the charge correlation with the lepton consistent with that of a semileptonic decay of a \(B \) meson.

These datasets have been used in the past years to measure the masses and lifetimes of all known b-hadrons with a precision comparable to, and sometimes better than, CLEO and SLD, and the experiments at LEP.

More recently, several results on \(B_0\bar{B}_0 \) mixing have become available from the CDF collaboration. The key to the success of these analyses is the development of techniques to tag the flavor of the \(B_0 \)'s at production. These techniques fall into two broad categories: tagging of the flavor of the second b-hadron in the event (opposite side tagging) or tagging the flavor of the \(B_0 \) at production exploiting the properties of the b-quark fragmentation into mesons (Same Side Tagging). Examples of opposite side tagging are methods which test the sign of an additional lepton, or attempt to determine the “charge” of a jet by performing a weighed average of the charge of its tracks. These charges are correlated with the sign of the b-quark which gave origin to the lepton or the jet. Same side taggers take the sign of a track kinematically close to the \(B_0 \) as a tag of the sign of the b-quark which evolved into the \(B_0 \).

CDF has currently completed several independent analyses of \(B_d\bar{B}_d \) mixing, each using different combination of data set and flavor tagging techniques. The results from two such analyses are shown in the central and right plot of fig. 15.
The CDF average for the B_d mixing frequency Δm_d is $0.494 \pm 0.026 \pm 0.026 \, \text{ps}^{-1}$; in good agreement with the results of the LEP experiments and with similar resolution49.

CDF has also set a limit on the B_s mixing frequency, $\Delta m_s < 5.8 \, \text{ps}^{-1}$ at 95% CL50.

Shortly after this conference CDF has released a new measurement of the CP violating parameter $\sin(2\beta)$ 49,51, where β is the phase of the element V_{td} of the CKM mixing matrix in the Wolfenstein representation. This analysis uses a sample of approximately 400 $B_d \to J/\psi K_S^0$ decays, as shown in fig. 16, and uses 3 different flavor tagging schemes: lepton, jet charge and same side tagging. The asymmetry between meson and anti-meson production as a function of the proper time is expected to have a sine wave dependence with an amplitude given by the product of the tagging dilution and $\sin(2\beta)$. Approximately 50% of this data does not have vertex detector information and therefore contributes to the measurement only as an integrated asymmetry.

The dilutions of the lepton and jet charge tagging are measured using a parallel sample of ~ 1000 $B_u \to J/\psi K^+$, where we know already the right tagging answer from the sign of the kaon. This method cannot be applied to the same side tagger, since B_u's and B_d's have different charge correlations with nearby tracks. In this case the dilution is extracted from the mixing analysis using semi-exclusive events and then the results corrected with Monte Carlo to account for the slight difference in momentum spectrum between the $B_d \to J/\psi K_S^0$ and the $B_d \to \nu D^{(*)}$.

After applying a global fit to the data they obtain: $\sin(2\beta) = 0.79^{+0.41}_{-0.44}$ including systematics. This result corresponds to a unified frequentist confidence interval of $0 < \sin(2\beta) < 1$ at 93% CL.

Extrapolating from this result the CDF collaboration expects to measure
$\sin^2(2\beta)$ with an error between 0.05 and 0.1 after collecting 2 fb$^{-1}$ of data in the next run of the Tevatron.

4 Conclusions and prospects

Experiments at HERA and at the Tevatron continue their successful study of QCD. The new results confirm an overall agreement with the theory, sometimes even beyond the range where one would expect perturbative QCD to work well, and are constraining more and more our understanding of the proton structure functions. Some high Q^2 excesses still persist, but are still consistent with the Standard Model predictions given the current statistic and systematic errors. The b-sector has an obvious normalization problem; there are however interesting theoretical developments which may lead toward their solution.

The study of phenomena related to rapidity gaps is receiving a growing interest from the Tevatron experiments and attempts are made to link this work with the results of Hera experiments, which have explored this field in depth.

The measurement of the basic top quark parameters has been completed by CDF and D0. While more sophisticated studies of top quark physics have begun, they are very statistics limited and will need the luminosity of the next Tevatron run to deliver relevant results.

The study of bottom quark physics, besides production issues, has been the domain of the CDF experiment, which has produced lately several interesting new results in the area of mixing and CP violation. In particular a new measurement of $\sin^2(2\beta)$ with a 0.4 total error has been recently obtained. This proves how the hadron colliders are going to be, in the near future, very competitive in the measurement of the elements of the CKM matrix.

Acknowledgments

I wish to thank all participants for their help in providing material for this summary. I am grateful to Al Goshaw and Joey Huston for their help and criticism on the QCD section. Last, but certainly not least, I would like to thank the organizers for putting together a very good and enjoyable conference.

References

 Bob Hirosky, “Inclusive jets at 1800 and 630 GeV”, These proceedings.
Physics ICHEP98, Vancouver, Canada, July 1998;
E. Rizvi, “NC and CC at High Q^2”, These proceedings.
5. T. Naumann, “The Proton Structure at Medium Q^2 at HERA”, These proceedings.
7. T. Asakawa, “Dijet results from CDF and D0”, These proceedings.
12. F. Abe et al., “Measurement of $\sigma \cdot B(W \rightarrow e\nu)$ and $\sigma \cdot B(Z \rightarrow e^+e^-)$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. Lett. 76 (1996) 3070-3075;
F. Abe et al., “Measurement of Z_0 and Drell-Yan production cross section using dimuons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. D59 (1999) 052002;
S. Abachi et al., “W and Z Boson Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. Lett. 75 (1995) 1456;
15. F. Abe et al., “Measurement of the $t \rightarrow \bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. Lett. 80 (1998) 2773.
B. Abbott et al., “Measurement of the top quark pair production cross section in $p\bar{p}$ collisions using multi-jet final states”, FERMILAB PUB-99-008-E, January 1999;
R. Raja, “Results on Hadronic Decay Modes of the Top Quark”, These pro-
17. K. Sliwa, “Top Mass and Cross Section Results from CDF and D0 at the Fermilab Tevatron”, These proceedings.
S. Frixione et al., CERN-TH-97-16, February 1997;
22. F. Abe et al., “Measurement of correlated $\mu - \bar{b}$ cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. D53 (1996) 1051;
F. Abe et al., “Measurement of $b\bar{b}$ Rapidity Correlations in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, Fermilab-Pub-98/392-E.
F. I. Olness, “Heavy Quark Production in DIS and Hadron Colliders”, These proceedings.
24. F. Abe et al., “J/ψ and $\psi(2S)$ Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. Lett. 79 (1997) 572;
27. S. M. Tlachczyk, “Quarkonium Production in $p\bar{p}$ Collisions at the Tevatron”, Fermilab-Conf-96/425-E.
28. H1 Collaboration, DESY-99-026;
R. Brugnera, “Heavy Quark Production at HERA”, These proceedings.
30. K. Terashi, “Rapidity Gap Results”, These proceedings.
33. J.Breitweg et al., “Measurement of the Diffractive Cross Section in Deep Ini-
J. Breitweg et al., “Measurement of the Diffractive Structure Function $F_2^{D(4)}$
C. Adloff et al., “Inclusive Measurement of Diffractive Deep-Inelastic ep Scat-
H1 Collab., “Measurement and Interpretation of the Diffractive Structure
Function $F_2^{D(3)}$ at HERA”, Conf. Paper 571, 29th Intern. Conf. on High-
Energy Physics, Vancouver, Canada;
T. Nunnemann, “Inclusive Diffraction and Leading Baryon Production at
HERA”, These proceedings.
34. K. Goulianos, “Renormalization of hadronic diffraction and the structure of
K. Goulianos, “From HERA to the Tevatron: A scaling Law in Diffraction”,
35. F. Abe et al., “Evidence for top quark production in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$
36. F. Abe et al., “Observation of Top Quark Production in $\bar{p}p$ Collisions with the
37. F. Abe et al., “Measurement of the Top Quark Mass with the Collider Detector
38. B. Abbot et al., “Direct Measurement of Top Quark Mass by the D0 collabora-
tion”, FERMILAB PUB-98/031-E, hep-ex/9801025;
B. Abbot et al., “Measurement of the Top Quark Mass in the Dilepton Channel”,
40. L. Yi-Cheng, “Single Top Production and M_H”, These proceedings
41. F. Abe et al., “Observation of the B_s Meson in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV”,
F. Abe et al., “Observation of B_s Mesons in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV”,
42. P. Singh, “B and rare decays”, These proceedings
43. F. Abe et al., “Search for the Decays $B^0_d \rightarrow e^\pm \mu^\mp$ and Pati-Salam Lepto-
F. Abe et al., “Search for the Decays $B^0_s \rightarrow \mu^+\mu^-$ and $B^0_s \rightarrow \mu^+\mu^-$
in $\bar{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV”, Phys. Rev. D 57, R3811 (1998);
F. Abe et al., “Search for Flavor-Changing Neutral Current B Meson Decays
44. B. Abbot et al., “Search for the Decay $b \rightarrow X_s \mu^+\mu^-$”, Phys. Lett. B423
(1998) 419.
R. Balest et al., CLEO-CONF 94-4;
M. S. Alam et al., “First measurement of the rate for the inclusive radiative
47. F. Abe et al., “Measurement of the $B_d^0 - \bar{B}_d^0$ flavor oscillation frequency and study of same side flavor tagging of B mesons in $p\bar{p}$ collisions”, Phys. Rev. D59 (1999) 032001;
F. Abe et al., “Measurement of $B_d^0 - \bar{B}_d^0$ Flavor Oscillations using Jet-Charge and Lepton Flavor Tagging in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, FERMILAB-Pub-99/019-E, hep-ex/990311.
48. F. Abe et al., “Measurement of the $B_d^0 \bar{B}_d^0$ Oscillation Frequency Using Dimuon Data in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV”, FERMILAB-Pub-99/030-E.
49. G. Bauer, “B Mixing and CP Violation”, These proceedings.
50. F. Abe et al., “Search for $B_d^0 \bar{B}_d^0$ Oscillations Using φ-Lepton Correlations”, FERMILAB-Pub-98/401-E.
51. The CDF Collaboration, “A measurement of $\sin(2\beta)$ from $B \rightarrow J/\psi K_S^0$ with the CDF detector”,