A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

PDF Version Also Available for Download.

Description

Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more ... continued below

Physical Description

163 p.

Creation Information

Bateman, V.I.; Brown, F.A. & Hansen, N.R. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 {micro}{var_epsilon} peak) amplitude and a 100 {micro}s duration (measured at 10% amplitude).

Physical Description

163 p.

Notes

INIS; OSTI as DE98003521

Source

  • Other Information: PBD: Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98003521
  • Report No.: SAND--96-1437
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/654203 | External Link
  • Office of Scientific & Technical Information Report Number: 654203
  • Archival Resource Key: ark:/67531/metadc707839

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 8:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bateman, V.I.; Brown, F.A. & Hansen, N.R. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1, report, June 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc707839/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.