Whole-core neutron transport calculations without fuel-coolant homogenization

PDF Version Also Available for Download.

Description

The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied ... continued below

Physical Description

13 p.

Creation Information

Smith, M. A.; Tsoulfanidis, N.; Lewis, E. E.; Palmiotti, G. & Taiwo, T. A. February 10, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied to a two-dimensional seven-group representation of a LWR containing MOX fuel assemblies. Comparisons are made of the accuracy of various space-angle approximations and of the corresponding CPU times.

Physical Description

13 p.

Notes

INIS; OSTI as DE00751856

Medium: P; Size: 13 pages

Source

  • PHYSOR 2000 ANS International Topical Meeting on Advances in Reactor Physics and Mathematics and Computation into the Next Millennium, Pittsburgh, PA (US), 05/07/2000--05/11/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/RA/CP-100240
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 751856
  • Archival Resource Key: ark:/67531/metadc707827

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 10, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 1:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smith, M. A.; Tsoulfanidis, N.; Lewis, E. E.; Palmiotti, G. & Taiwo, T. A. Whole-core neutron transport calculations without fuel-coolant homogenization, article, February 10, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc707827/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.