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IDENTIFICATION OF FUNCTIONAL COMPONENTS 
IN COMBINATIONAL CIRCUITS 

T.E. Doom, J.L. White, G.H. Chisholm, and A.S. Wojcik 

ABSTRACT 

Identifying the subcircuits in a detailed circuit description is a 
fundamental operation in both circuit validation and design recovery. Existing 
identification techniques rely on finding an exact match for a subcircuit 
structure within the description. These techniques fail to identify subcircuits 
that are functionally equivalent but have been obfuscated because a different 
technology is being used or because the design has been optimized. This report 
presents a mechanism for identifying subcircuits that are functionally 
equivalent, irrespective of obfuscating details. It also describes the initial 
progress made in transforming detailed circuit descriptions into corresponding 
descriptions based on subcircuits. Such progress depends on enumerating all of 
the candidate subcircuits within the original detailed description and 
functionally matching each candidate. The report presents unique solutions for 
reducing the amount of computation needed for this enumeration. 

1 INTRODUCTION 

This report is concerned with the reverse engineering (RE) of digital circuits (i.e.¶ 
developing a functional understanding of existing digital circuits). The goal of RE is to 
completely transform the description of a digital circuit system from a low level (such as a flat 
netlist) to a level high enough to be easily understood by a redesign engineer. The first step in 
such an approach is to extract functional information from the digital circuit descriptions. 

Reverse engineering may be viewed as the antithesis of design automation (DA). The 
goal of DA is to transform the description of a digital circuit from a higher level to a lower level. 
The DA literature focuses on the computer tools used to do this. Synthesis and layout tools are 
notable examples. 

The DA literature does not currently contain a significant body of work that addresses the 
RE goal. Preliminary work on extracting functional information from a combinational circuit to 
verify layout design and supply feedback during the transformation from layout design to logic 
design is addressed in Ohmura et al. (1990), but, as indicated in that paper, such methods require 
“additional knowledge” that is not necessarily available in a flat netlist. 
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In our initial attempts in RE, we started with a detailed description of a digital circuit and 
transformed that to a specification of its logical function - a transformation from the silicon 
level to the flat netlist level (see Table 1). The current goal is to develop techniques for 
determining the modular specification from such a netlist. The first step is to identify common 
high-level logical functional components within the netlist, such as arithmetic logic units 
(ALUs), adders, and multiplexers. By identifying such functions within a circuit, we can reduce 
the complexity of producing functional descriptions and provide tags, identifying data lines, 
control lines, and additional information that might be useful in specifying the design at higher 
levels. 

1.1 STATEMENT OF PROBLEM 

The transformation of a gate-level netlist describing a circuit into a modular-level 
representation describing the circuit in terms of functional components (such as ALUs and 
multiplexers) and glue logic is the focus of this phase of the RE Project (Eckmann and Chisholm 
1997). This report refers to this problem as the module identification (MI) problem. 

Definition 1: Module identification (MI) problem. Given a netlist, identify 
all. subcircuits (clusters) that perform the function of a standard library 

TABLE 1 Description of Specification Levels 

Specification Level Description of Functiona 

Design intent Natural language 
Behavioral Full (VHDL behavioral) 
Functional Mathematical 
Modular Library level (VHDL structural) 
Flat netlist Gate level 
Silicon Transistor level 

a VHDL = very-high-speed integrated circuit (VHSIC) 
- hardware description language. VHDL is a large, high- 
level VLSI design language with Ada-like syntax that 
meets the U.S. Department of Defense standard for 
hardware description (IEEE 1076). 



module. The preliminary approach taken to solve the MI problem consists of solving 
two subproblems: 

- Candidate subcircuit enumeration (MI-Enum) problem. Identify 
clusters of gates within the netlist that may compose a functional 
component. 

- Subcircuit identification (MI-ID) problem. Identify a functional com- 
ponent equivalent to the cluster by proving semantic equivalence between 
the cluster function and some pattern function representing a functional 
component. 

1.2 ASSUMPTIONS 

Our preliminary research is directed toward solving basic problems in a tractable 
(i.e., doable) amount of time. Therefore, for purposes of our initial work, the circuit being reverse 
engineered is assumed to be an unoptimized implementation. Thus, our approach relies on the 
following assumptions: 

1. The cluster function is assumed to have the same number of inputs and 
outputs as the pattern function. Inputs that are bridged or “stuck at” (i.e., never 
change; see Section2.8) must be represented as such and not optimized or 
reduced. No output can be ignored; every output of any library entity must 
either be a primary output or used as the input at some other point in the 
circuit. 

2. The cluster function and pattern function must match exactly; “don’t care” sets 
are not considered. Future extensions that handle don’t care conditions are 
considered in Sections 3.2 and 6.2.2. 

The results presented in this report are further restricted to identifying synchronous 
combinational components with no loops or other timing issues. 
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2 BACKGROUND AND PREVIOUS WORK 

This section of the report covers some common terms, major issues, and published 
techniques related to the identification of logical functions as required for RE. This overview is 
not comprehensive; it is the result of preliminary research in this area. The references cited 
contain additional details. 

2.1 STRUCTURAL MATCHING 

Previous approaches to this problem relied on the discovery of subgraph isomorphisms to 
identify subcircuits (Bochner 1988, Luellau et al. 1984, Ohlrich et al. 1993). Although they are 
useful in such applications as conberting a transistor netlist into a gate netlist, techniques that rely 
on exact structural matching (syntactic algorithms) have limited usefulness when applied to 
higher levels of design, since high-level components have many valid implementations. 

Syntactic techniques have been successfully , used to identify isomorphisms between 
the structures in a circuit description and those in a particular implementation (or set of 
implementations) of a high-level library entity. The advantage of structural matching is that it is 
exceptionally efficient, much more so than any more “complete” solution to the MI problem. 
However, it also has significant drawbacks that cause it to fail as a complete solution to the 
general MI problem. 

A syntactic algorithm can identify only the implementations of a functional component 
that are contained in its library; thus, nonstandard or intentionally obfuscated implementations 
are never recognized. Furthermore, any optimization that modifies the implementation of the 
entity (such as optimizations for don’t care conditions) makes the entity unfit for recognition by 
structural techniques. Structural matching cannot reliably recognize all functional components 
that exist in a circuit. 

Nevertheless, any solution to the general MI problem should include the use of structural 
matching to recognize standard implementations of functional components within the circuit. 
When such exceptionally efficient syntactic techniques are applied first, the effective complexity 
of a circuit can be significantly reduced before more complex approaches are applied. 

2.2 SUBGRAPH ENUMERATION 

For ease of representation and manipulation, the circuit being reengineered can be 
represented as a directed graph. Many graph partitioning algorithms have been specifically 
modified to operate upon such circuit nets. The goal of these algorithms is generally “to divide a 
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system specification into clusters such that the number of intercluster connections is minimized” 
for use in circuit board layouts (Alpert and Kahng 1995). 

Although the problems appear to be similar, several factors distinguish the MI-Enum 
problem from the traditional partitioning problem. Partitioning implies that the clusters are 
disjoint, but that assumption cannot be made for the MI-Enum problem. Several modules may 
share functionality, so they may overlap and share gates. Relying on a strict partitioning 
algorithm could result in unidentified modules. 

Further, because the problem of determining the perfect partition for given constraints is 
NP-complete,l partitioning techniques are generally approximation algorithms. In solving the 
semantic equivalence problem, all subcircuits whose semantics exactly match those of the high- 
level module must be identified. An approximate subcircuit will not suffice. 

Another important difference between standard partitioning approaches and the approach 
to the MI-Enum problem is that standard approaches generally use heuristics that gradually 
improve the partition. Because no method is currently available for judging whether a given 
subcircuit is semantically close to the high-level module that is being sought, it is not possible to 
select likely subcircuits and build from them. 

2.3 THE EQUIVALENCE PROBLEM 

Consider some subcircuit (or subgraph) of a combinational circuit. Such a subcircuit has 
), 10’1 outputs such that 0’ = (01, . . . , O I ~ I ) ,  and a vector of I i l  inputs such that a = (il, ..., 

among them: 
Boolean functions or partial (the cluster function) that determines the relationships 

F( ‘) = (fl (r), . . . , fia, (‘)) . 

NP-complete = nondeterministic polynomial time complete: A set or property of computational decision problems 
that is a subset of NP (i.e., can be solved by a nondeterministic Turing Machine in polynomial time), with the 
additional property that it is also NP-hard. Thus, a solution for one NP-complete problem would solve all 
problems in NP. Many (but not all) naturally arising problems in class NP are in fact NP-complete. There is 
always a polynomial-time algorithm for transforming an instance of any NP-complete problem into an instance of 
any other NP-complete problem. Therefore, if you could solve one, you could solve any other by transforming it to 
the solved one. The first problem ever shown to be NP-complete was the satisfiability problem. Another example 
is Hamilton’s problem. 
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Likewise, for any high-level component with inputs x' and outputs 7 ,  there exists a vector of 
Boolean functions (the pattern function) that describes its behavior: 

The following two bijections - nz, the input permutation function, and no, the output 
permutation function - are defined as follows: 

Definition 2: PP-equivalent. Two vectors of Boolean functions F and G are 
input-permutation, output-permutation equivalent (PP-equivalent) if bijections 
exist such that: 

Single-output functions (often dealt with in technology mapping problems) are 
simply referred to as being permutation equivalent (P-equivalent). We can 
now define semantic equivalence for combinational designs. 

Definition 3: Semantic matching. Two combinational designs DI and 0 2  
with corresponding vectors of Boolean functions F and are semantically 
equivalent if and 6 are PP-equivalent. The input bijection nz and the 
output bijection no under which and G are PP-equivalent describe the 
semantic matching between DI and 0 2 .  

2.4 BINARY DECISION DIAGRAMS 

Definition 4: Binary decision diagram (BDD). A BDD (Bryant 1985) is a 
directed acyclic graph consisting of two types of nodes. A nonterminal node v 
is represented by a 3-tuple:2 (index(v), childl(v), childiv)), where index(v) E 

3-tuple = a data object containing three components; a 2-tuple contains two. 
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{ O,l ,  . . . , n - 1 } and chiZdl(v) and childiv) are themselves nodes of the BDD. 
A terminal node v is represented by a 2-tuple (index(v), vuZue(v)), where 
index(v) = n and vuZue(v) E {O.l}. A BDD is ordered if for 
every nonterminal node v, index(v) e index(chiZdl(v)) and index(v) < 
index(chiZdJv)). A BDD is reduced if there is no nonterminal node v such that 
chiZdl(v) = childiv) (redundant nodes) and there are no two nonterminal 
nodes u and v such that chiZdi(u) = chiZdl(v) and childiu) = chiZdJv) 
(isomorphic nodes). 

A BDD represents a Boolean function as a directed acyclic graphic. Figure 1 illustrates a 
reduced, ordered BDD (ROBDD) for the function of a two-bit full adder. Terminal nodes (shown 
as boxes) have no children and contain values corresponding to possible outputs of the function. 
Nonterminal, or decision, nodes (shown as circles) are labeled by a variable identifier and 
possess a labeled, outgoing arc for each value the Boolean variable may take: the “then” arc is 
taken when the decision variable has the value 1, and the “else” arc is taken when the decision 
variable has the value 0. A decision node with no incoming arc is called a root node. The 
functional value for any variable assignment is determined by traversing the path from the root 
node to a terminal node by following the appropriate branch at each decision node. 

2.5 FACTORIAL PERMUTATION 

Although testing the equivalence of two single-output functions represented as ROBDDs 
can be achieved in constant time (Bryant 1985), such testing requires that the correspondences 
between the input variables be clearly identified. Because input and output variable 
correspondences are not generally available, the straightforward method for determining if two 
multiple-output functions are PP-equivalent is to test for equivalence over the set of ITI! IZI! 
possible pairs of bijection functions @e., over all input and output permutations). When inputs 
number more than seven to nine, the straightforward permutation technique is computationally 
intractable. 

2.6 LOGIC VERIFICATION 

In logic verification, a specification describing some functional behavior is compared 
with a circuit implementation of that function to prove equivalence. Verification techniques that 
can deal with problems involving large numbers of inputs, sequential behavior, and significant 
numbers of intermediate gates do exist. However, such techniques require that correspondences 
between the implementation and specification be known (Lai et al. 1992). Since we cannot 
assume such correspondences are available for the MI problem, verification techniques are 
generally not applicable. 



x-lo 

c-out sum-hi z sum-Io 5 
I :  

1 

Boxes indicate terminal nodes, circles indicate decision nodes, 
and decision nodes with no incoming arcs indicate root nodes. 
The label of each node is a unique random name; all nodes of 
the same level correspond to the same variable, whose name is 
shown at the left of the diagram. Solid lines indicate then arcs. 
Dashed lines indicate else arcs. Dotted lines indicate 
complemented else arcs and negate the value of the terminal. 

FIGURE 1 Multirooted Binary Decision Diagram That 
Represents the Function Performed by a Two-Bit Adder 
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2.7 LOGIC SYNTHESIS 

I 2.7.1 Technology Mapping 

Technology mapping (also known as cell-library binding) is part of the synthesis process 
that must be used to transform logic representations into interconnections within a set of 
implementation-dependent cells. Technology mapping is used to create cost-optimized 
implementations for some logic function or Boolean network in a particular style in terms of 
some library of building blocks (cells). The detection of the equivalence of these Boolean 
functions to cells, referred to as Boolean matching, is well studied (Benini and Micheli 1997). 

In many ways, the problem of determining the equivalence between a combinational 
circuit and a library of high-level entities is similar to the problem of Boolean matching. Boolean 
matching algorithms are designed to efficiently match small (fewer than six inputs) single-output 
clusters with a component of their cell libraries that implements the function at the least cost. 
However, although a general solution to the equivalence problem must be able to efficiently 
match functions with any number of inputs and outputs, it also needs to be concerned with a 
single (although possibly multiple-output) pattern function rather than an entire library of such 
functions. The goal of semantic matching is not to find the “best” implementation of a function 
from a set of possible implementations but to identify equivalence and variable correspondences 
between a particular subcircuit and a particular high-level component. It appears that no suitable 
solution to this problem has been reported on in the literature. 

2.7.2 Boolean Signatures and Filters 

A signature of a Boolean function is a unique and characteristic representation of some 
property of the function. Although two otherwise unrelated functions can have the same 
signature, having equal signatures is a necessary condition for equivalence matching. Functions 
that share a signature are said to share a signature class. 

A signature function is a function that takes a generic function as an input and returns a 
characteristic signature for that input function. The value of a signature function must be 
determined only by the behavior of the generic function; variable order, variable labels, and 
random elements may not be used as part of the determination. 

Boolean signatures have been used successfully to increase the efficiency of Boolean 
matching algorithms (Mailhot and Micheli 1993). Since sharing a signature class is a necessary 
condition for equivalence, the matching of signature functions can be used to eliminate functions 
from equivalence consideration. Functions that do not have matching signature characteristics 
can be filtered from the search space since they cannot be equivalent; thus, they do not need to be 
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considered further in the testing process. The primary limit to the effectiveness of such filtering is 
the complexity cost of the signature function. 

The use of filtering techniques in Boolean matching (Mailhot and Micheli 1993) has 
resulted in the discovery of a wide variety of signature tests by various researchers. Using 
signatures as filters to eliminate some permutations from consideration can appreciably reduce 
the complexity of a P-equivalence check. There are two classes of signatures: those that provide 
information on the behavior of input variables (input signatures), and those that provide 
information on the behavior of output variables (output signatures). Some of these signatures are 
discussed briefly here because they offer directions for future research. Lai et al. (1992) contains 
additional details. 

For any functionflxl, ..., x,), represented by BDD G of size IGI, the following signatures 
are defined: 

Cardinality of dependence set: The dependence set of a function consists of 
only those input variables that have an effect on its value. Thus, 

I 

The output signature Fdeppo? = IDepv)I can be computed in O(IG1) time by 
using a BDD-based algorithm (Lai et al. 1992). This signature is particularly 
useful when output-permutation equivalence is being determined. Outputs can 
be permuted only with outputs of the same dependence set cardinality. 
Functions that do not have the same number of outputs in each cardinality 
class cannot be equivalent. 

Cardinality of on-set: The on-set of a function consists of all input 
assignments that produce a true (on) output. The cardinality of the on-set is 
one of the more effective Boolean signature functions. 

This signature can be computed in @(IGI) time by using the algorithm 
presented in Lai et al. (1992). This signature can be used to reduce both the 
number of output matches between multiple-output functions and the number 
of input permutations. 



Unateness of input variables: A binate variable is present in both its 
complemented and uncomplemented forms in the minterm (Le., minimum 
term) expression for a function. A unate variable is present in either its 
complemented or uncomplemented form, but not both. Thus the unateness of 
each input variable can be used as a signature Funat,cfx) = {binate, positive 
unate, negative unate} . For two functions to be equivalent, corresponding 
input variables must have similar unateness properties. 

The unateness of input variables can also be used as an output signature. For 
each output, count the number of binate, positive unate, and negative unate 
input variables that occur in the function’s minterm expression. Its matching 
function must share these same sums. Computing the unateness of each input 
variable for each output function is an O(IG12) operation, which may be too 
expensive for the MI problem. 

Symmetry class of input variables: Two variables are symmetric if they can be 
interchanged without changing the value of the function. Thus xi and xj are 
symmetric if and only iff(. . ., xi, . . ., xj, . . .) = f(. . ., xj, . . . , xi,  . . .). The input 
variables can be partitioned into symmetry classes that act as a signature for 
each output function. In addition, input variables can be matched only to input 
variables that have equivalent symmetry classes over all output functions. 
Symmetry computation requires an O(IG12) operation for each pair of inputs 
for each function and is probably too expensive for the MI problem. Although 
they can be effective for small cells in Boolean matching problems, symmetry 
classes are not always an effective signature on high-level entities, many of 
which have few symmetries. 

High-level entities, however, often posses group symmetries. When some 
group of input variables can be interchanged with a disjoint group of input 
variables without changing the value of the function, the groups of variables 
are said to be group symmetric. Group symmetries are also signature functions 
that might be particularly effective on high-level entities representing 
arithmetic functions. Calculating group symmetries, however, is not a trivial 
operation. 

Sizes of hamming distance k: This signature is defined to be the set of 
cardinalities to the n - 1 sets of pairs of one-points o f f  whose Hamming 
distance is k, 0 c k c n. This signature can be computed in O(n IGl) by using 
the algorithm presented in Lai et al. (1992). This signature is quite effective, 
but the complexity of the computation significantly limits its usefulness. 
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2.8 OPTIMIZED CIRCUITS 

2.8.1 High-Level Design and Synthesis 

During both high-level design and the synthesis process, logic functions may be modeled 
from available units that “almost” fit the necessary function. The actual cells used depend on the 
specific cell library and the cost metrics associated with the binding processes. 

Three common techniques used in high-level design that complicate the RE Project 
include bridged inputs, stuck-at inputs, and ignored outputs (Mailhot and Micheli 1993). When 
two (or more) inputs to a library cell are connected to the same input line, such cell inputs are 
bridged. When a library input is tied to ground (power), the input is stuck at 0 or stuck at 1 
(either logical 0 or logical 1). Furthermore, some outputs of the library entity may not be being 
used. High-level designs that incorporate these features may be difficult to identify in netlists 
because of local optimizations. 

When a logical function with bridged or stuck-at inputs is mapped, its implementation 
will take advantage of these facts to greatly simplify the details of the design. Furthermore, the 
number of inputs and outputs of a cluster may not correspond to the number of inputs and 
outputs of the pattern function that it represents in these three cases. Matching clusters to high- 
level entities in which such techniques were used remains a complex operation. 

Another point to remember is that circuit optimizations may cause the intermediate 
functions that are traditionally performed by several distinct library units to occur in a single, 
shared cluster. Therefore, care must be taken to note that not all outputs of a cluster are 
necessarily outputs of its corresponding library entity, and that an identified cluster cannot always 
be simply replaced by the high-level entity identified. 

It is beyond the scope of our present work to find high-level entities corresponding to 
clusters that have stuck-at inputs, bridged inputs, or unused outputs. The number of inputs and 
number of outputs must be equivalent for detection to be successful (Section 1.2). 

2.8.2 Don’t Care Sets 

Consider a circuit with primary inputs X, primary outputs Z ,  and the vector of functions 
*( 2) = ,?(as defined in Equation l), which determines the relationship between them. Also 
consider some cluster within this circuit with inputs i, outputs 0, and vector of functions 
F( i) = 0’ , which similarly determines the behavior of the cluster circuit. 
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In a completely specified circuit, it is possible to determine the vector of functions 
i‘( 2)  = ? (which determines the cluster inputs for any given primary input set) and the function 
Q(2,6) = .?(which determines the value of the primary outputs on the basis of the value of the 
cluster outputs and the behavior of the rest of the circuit). These relationships fully describe the 
environment around the multioutput cluster. 

The input controllability don’t care set (CDC) for the cluster includes all input conditions 
that are never produced by the environment (Benini and Micheli 1997). Thus the CDC is defined 
as follows: 

The output observability don’t care set (ODC) for each output of the cluster denotes all 
input patterns that produce situations in which the output of the cluster is not observed by the 
environment (Benini and Micheli 1997). Effectively, the ODC set contains all cluster inputs for 
which the values of the primary outputs do not depend upon the output(s) of the cluster. In 
mathematical terms: 

V2 such that p(2) = t.‘, V6 E Range(F), G(2, 6 )  = H(l)} . (9) 

These don’t care conditions produce degrees of freedom available within the cluster 
function. Functions within these degrees of freedom will produce behaviors that the environment 
cannot distinguish from each other. During the selection process, a function that is close to but 
not identical to the logical function specified by the cluster may be chosen to implement that 
logical function. That is, some vector function F’ may be chosen such that: 

The actual function implemented will be one of the functions that obeys these conditions 
and has a low associated cost. These kinds of don’t care optimizations are common in 
sophisticated synthesis algorithms as well as in hand-optimized designs. The RE Project requires 
that one be able to determine the high-level function effectively performed by a cluster, even if 
the actual function performed by the cluster does not behave as expected under the don’t care set. 

In this initial work, we do not consider problems that contain don’t care optimizations. 
We hypothesize, however, that by identifying the don’t care set for a particular cluster function, 
we can “mask” both the cluster function and the pattern function before checking for 
P-equivalence. Approaches to this problem are discussed in Section 6.  
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3 CANDIDATE SUBCIRCUIT ENUMERATION 

Before all of the library entities within the circuit can be located, all of the potential 
library entities within the circuit must be located. This is a very challenging task. A section of the 
circuit that corresponds functionally to a library entity will not necessarily appear to be similar in 
any structural way, including its size, order, connectivity, or positioning. This lack of similarity 
impedes any attempt to guide the subgraph generation with meaningful heuristics. To ensure that 
all potential library entities are located, all possible subgraphs of the initial circuit netlist must be 
generated. 

In a completely connected graph, the number of (not necessarily disjoint) subgraphs that 
could exist is 

where n is the order of the graph. Digital circuits are never completely connected, so the number 
of subgraphs will be significantly smaller. However, the above equation does give an upper 
bound and succinctly imparts the enormity of this problem. 

To guarantee that all library entities within the graph have been located, we must 
generate all of the possible matches. As stated above, the order, size, and configuration of a 
subgraph may differ from those of a functionally equivalent library module. Therefore, we must 
focus on the attributes that can be assumed to be true about a subgraph and its equivalent library 
module. Our initial method takes advantage of the following facts: 

1. A subgraph representing a function must have a number of inputs and outputs 
equal to those of the corresponding library module. 

2. The inputs must fully define the outputs. 

3. A subgraph must be a connected graph. 

This section discusses a method used to enumerate all candidate subcircuits of the circuit. 
The number of subgraphs within a directed graph is exponential, and generating all of these 
subgraphs cannot be accomplished in polynomial time. However, because the algorithms 
presented here take advantage of the information that we gain from knowing that the graph 
represents a digital logic circuit, they can generate all candidate subcircuits quickly for small 
circuits. Improvements that allow larger circuits to be handled within a reasonable amount of 
time are discussed in Sections 3.3 and 6.1. 
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This method is guaranteed not to m i s s  any potentially important subcircuits. It operates 
efficiently enough that when a few heuristics are applied, it can handle moderately sized circuits 
in a reasonable amount of time. 

3.1 PRELIMINARY DEFINITIONS 

In this report, the term “circuit” refers to a digital circuit. When a graph representing a 
circuit or subcircuit is being discussed, its gates are called nodes, and its connections are called 
arcs (Christofides 1975). As a cluster of gates is formed, it is simply called a subgraph until all of 
its constituent gates are fully specified. At this point, it is called a valid subgraph. 

Definition 5: Order. The order of a graph G is the number of nodes within G. 

Definition 6: Parent. The parent of a gate g is a gate whose output is an input 
to gate g. The children of a gate g are those that have the output from g as an 
input. 

Definition 7: Fully specified. A gate is fully specified if and only if either all 
or none of its parents are contained within the subgraph within which it is 
contained. 

Definition 8: Input. A gate is an input to the subgraph in which it is 
contained if and only if none of its parents are also in that subgraph. 

Definition 9: Valid subgraph. A subgraph H represents a valid subgraph if 
and only if it is connected and each gate in Hi s  fully specified. 

Definition 10: Forward arc. A forward arc is an arc from a parent to a child. 
A backward arc is an arc from a child to a parent. 

Definition 11: H’ = H + V. The notation H’ = H + V indicates that a new 
subgraph H’ is created by adding a neighboring node v onto an existing 
subgraph H .  The arc between v and H is also added, resulting in the induced 
subgraph H’. 
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3.2 SUBCIRCUIT ENUMERATION 

Generating all of the subgraphs of a graph for enumeration is a lengthy process that can 
result in an exponential number of subgraphs. Each of the following algorithms operates by 
expanding subgraphs. When a subgraph H is expanded, a neighboring node is added to H such 
that the resulting graph H’is also an induced subgraph of the original graph. We first present a 
naTve algorithm, Algorithm 1, that generates all of the subgraphs of the graph representing the 
circuit. Algorithm 1 provides the basis for explaining two algorithms that are more efficient. 

Algorithm 2 takes advantage of the fact that any subgraphs that need to be investigated 
will also be valid subgraphs. A subgraph that does not represent a valid subgraph cannot possibly 
be semantically equivalent to a known high-level module, so it is unnecessary to generate the 
subgraph. Algorithm 2 creates only subgraphs that are valid subgraphs, thus remarkably reducing 
the number of extraneous subgraphs. The remaining subgraphs that are generated are duplicates 
of already existing subgraphs. Algorithm 3 enforces an ordering on the gates, which reduces the 
number of duplicate subgraphs, although it cannot completely eradicate them. 

All algorithms maintain two pools: P and S.  P contains the subgraphs that are to be 
expanded, and S contains those that have already been expanded. When the algorithms terminate, 
S contains all of the subgraphs generated by the algorithm. Figure 2 represents a simple one-bit 
adder circuit that illustrates the three algorithms. 

FIGURE 2 One-Bit Adder 
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3.2.1 Algorithm 1: Naive Generation 

Algorithm 1 begins by initializing a pool P of subgraphs, each consisting of a child- 
parent pair from the graph representing the original circuit, the graph C. Each of these pairs 
becomes an initial subgraph. The initial pool therefore consists of order two graphs, one created 
from each arc (connection) in the circuit. For each subgraph in the pool P, the external arcs are 
calculated. An external arc is an arc with one end point within the subgraph and one outside. The 
subgraph is duplicated and extended along each of its external arcs. This algorithm will terminate 
when every subgraph P in has been expanded and moved into S. For Figure 2, the initial pool of 
subgraphs generated by the nalve algorithm will contain 10 subgraphs, one for each arc in the 
graph, each containing the end points of an arc in the subcircuit. 

3.2.1.1 Description 

Step 0: Initialize. Create empty pools P and S. 

Step 1: Generate initial subgraphs. For each node v E Cy create subgraphs 
such that each subgraph contains v and one of its children. 

Step 2: Expand pool. While P is not empty, examine subgraph H E P. 

- Step 2.1: Expand subgraph. For each arc leaving from H to a node v, 
create a new subgraph H’= H + v. Move H to S. 

- Step 2.2: Add new subgraphs to pool. For each new subgraph, verify that 
it is not a duplicate subgraph and add H’to P. 

3.2.1.2 Example 

The initial subgraph shown in Figure 3 was formed by 
the arc connecting M1 and M3. The original graph,, Figure 2, 
has five external arcs. Two are forward: S and Cout. Three are 
backward: X, Y, and Cin. Five duplicates of the Ml-M3 
subgraph are then created, and one of the external arcs is added 
to each. Five new subgraphs of order three are thus formed. 
They are tested to ensure uniqueness, then added to P. The 
algorithm then proceeds to the next subgraph in P. 

FIGURE 3 Subgraph 
with M1 and M3 
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3.2.2 Algorithm 2: Generation of Valid Subgraphs 

If we know that graph C represents a logic circuit and that the only subgraphs needed are 
those that correspond to a valid subcircuit in the original circuit, we can make many 
improvements to the algorithm. To locate the candidate subcircuits, we are interested in only the 
valid subgraphs, because only they have the potential of matching a known module. Therefore, 
we need to generate only the subgraphs that represent valid subgraphs of the original circuit. 

We made several modifications to the naWe algorithm to implement this change. The 
pool P was initialized with valid subgraphs. This was accomplished by creating a subgraph for 
each node that contains the node and its parents. The subgraphs were no longer extended along 
both the forward and backward arcs. This algorithm first extends along the forward arcs, picking 
up any backward arcs necessary to completely specify its internal nodes, thus ensuring that a 
valid subgraph is created. It also extends backward from its inputs, but instead of adding the 
parents individually, it simply adds all of the parents at once, because all are necessary to specify 
the node and the subcjrcuit. 

By expanding only the valid subgraphs, we reduced the number of duplicate subgraphs 
created, but the new subgraphs generated are not necessarily valid subgraphs. To transform a 
subgraph into a valid subcircuit, we must fully specify each of its constituent gates. The missing 
parent or parents of any gate that is incompletely specified will be added to the gate until all the 
gates are fully specified and the subgraph represents a valid subgraph. 

3.2.2.1 Description 

Step 0: Initialize. Create empty pools P and S .  

Step 1: Generate initial subgraphs. For every node v E C that is not an input to 
C,  create a subgraph H containing H and its parents. Assign a label to H that 
corresponds to the highest index of the nodes in H. 

Step 2: Expand pool. While P is not empty, examine subgraph H E P. 

- Step 2.1: Expand subgraph forward. For each forward arc from H to a 
node v, create a new subgraph H’= H + v. 

- Step 2.2: Expand subgraph backward. For each input v of H ,  create a new 
subgraph H’which contains a copy of H and all of the parents of v. Move 
H to S.  
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- Step 2.3: Ensure subcircuit validity. For subgraph H’, ensure the validity 
of the represented subcircuit by adding the nodes necessary to fully 
specify each node v E H’. 

- Step 2.4: Add new subgraphs to pool. For each new subgraph H’, verify 
that it is not a duplicate subgraph and add H’to P. 

3.2.2.2 Example 

The order two subgraph of Figure 3 does not represent a valid subgraph because only one 
of M3’s parents is in the subgraph and therefore M3 is not fully specified. To create a valid 
subgraph from the Ml-M3 subgraph, Cin must be included to fully specify M3, resulting in the 
subgraph shown in Figure 4. This subgraph represents a valid subgraph of the original circuit. 

3.2.3 Algorithm 3: Ordered Generation of Valid Subgraphs 

The algorithm to generate valid subgraphs generates a significant number of duplicate 
subcircuits because even when only valid subcircuits are expanded there is more than one way to 
grow a subgraph. For instance, the subgraph shown in Figure 5 can be grown by adding M2 to 
the subgraph in Figure 6 or by adding M1 to the subgraph in Figure 7. 

To reduce the number of duplicates that are created, the nodes are ordered such that each 
node has a unique integer index that is higher than the indices of all of its parents. The node 
ordering for the original circuit is displayed in Figure 8. Rules can then be enforced dictating 
which nodes can be added to a subgraph when it is being expanded, thus preventing many 
duplicates from being created. 

3.2.3.1 Description 

Step 0: Initialize. 

- Step 0.1: Initialize pools. Create empty pools P and S .  

- Step 0.2: Initialize circuit. Iterate through C in a breadth-first manner, 
labeling each gate with a unique integer index, such that its index is higher 
than the indices of its parents. 
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'ip 
FIGURE 4 Subgraph with 
Cin, M1, and M3 

FIGURE 6 Subgraph with 
M1, X, and Y 

FIGURE 5 Subgraph with 
M1, M2, X, and Y 

FIGURE 7 Subgraph with 
M2, X, and Y 

FIGURE 8 Original Circuit 
with Node Ordering 
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Step 1: Generate initial subgraphs. For every node v E C that is not an input to 
C, create a subgraph H containing H and its parents. Assign label to H that 
corresponds to the highest index of the nodes in H .  

Step 2: Expand pool. While P is not empty, examine subgraph H E P .  

- Step 2.1: Expand subgraph forward. For each node v adjacent to 
subgraphH with an index greater than the label of H ,  create a new 
subgraph H’= H + v. 

- Step 2.2: Expand subgraph backward. For each input v of H ,  create a new 
subgraph H’ that contains a copy of H and all of the inputs to v. Move H 
to s. 

- Step 2.3: Ensure subcircuit validity. For subgraph H’, ensure the validity 
of the represented subcircuit by adding the nodes necessary to fully 
specify each node v E H’. 

- Step 2.4: Add new subgraphs to pool. For each new subgraph H’, verify 
that it is not a duplicate subgraph and add H’to P. 

3.2.3.2 Example 

With the ordering now imposed on the creation of subgraphs, the subgraph in Figure 5 
can be created only from the subgraph in Figure 6. The ordering displayed in Figure 8 indicates 
that the index of the graph in Figure 7 is 4, because that is the highest index of its nodes. 
Therefore, M1 may not be added because its index is not greater than the index of the graph. 
However, M2, with an index of 4, may be added to the graph in Figure 6 because the index of the 
graph is only 3, less than the index of M2. 

3.3 GENERAL IMPROVEMENTS 

As previously discussed, the number of subgraphs for reasonably sized circuits is 
unreasonably large. Therefore, a method was devised to significantly reduce the number of 
subcircuits generated by investigating slices of the circuit at a time. 

Definition 12: Distance. The distance between two gates within the circuit 
describes the number of connections traversed in traveling from one gate to 
the other. 
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Definition 13: Window. A window refers to a collection of gates in which 
each gate is no more than distance n from another gate, where n is the size of 
the window. 

The gates within the initial slice are constrained to be no more than n steps from the 
inputs of the graph. After that slice has been fully investigated (all subcircuits have been 
generated), the window is slid forward one step, so that the input gates are no longer under 
consideration, and the gates one level deeper in the graph are now part of the current window. 

This method does not generate all of the subcircuits of the circuit; it generates only those 
circuits with a depth that is less than the size of the window. It is necessary to choose a depth that 
is large enough to usually generate alternate implementations of the library modules, yet small 
enough so that the number of subcircuits becomes manageable. 
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4 CLUSTER IDENTIFICATION 

This section describes an algorithm for determining if a semantic match exists between a 
subcircuit and a high-level component. A general solution to the MI-ID problem requires the 
identification of high-level components that are more complex then those dealt with in Boolean 
matching but that lack the inputloutput correspondences between the logic design and the library 
components that verification techniques require. Since the function performed by a high-level 
component may be represented in any number of structural forms, we must identify the subcircuit 
by proving semantic equivalence (Eckmann and Chisholm 1997). Although semantic techniques 
are not limited to any particular level of circuit description or application, this report considers 
only the identification of high-level components from gate-level netlists. 

4.1 INPUT SIGNATURES AND SUSPECT SETS 

Our approach to the semantic matching problem uses signature information to reduce the 
number of input correspondences that must be considered. This is accomplished through the use 
of suspect sets. 

As discussed in Section 2.7.2, a signature of a Boolean function is a unique, characteristic 
representation of some property of the function. The signatures that provide information 
regarding the behavior of a function’s input variables are referred to as input signatures. 

Definition 14: Signature class. The signature values for any input signature 
function can be used to partition the function inputs into classes corresponding 
to their signature. Such a list of inputs is a signature class. 

The following theorem is clear: Input correspondences between the pattern and cluster 
function can take place only between members of their respective signature classes that have 
equal signature values. 

Definition 15: Suspect set. A cluster input variable ik’s suspect set, Sik, is the 
subset of pattern function ’s inputs, XI, ..., X I ~ I  , that share a signature class 
with ik under every input signature for which information is available. 

Using suspect sets will allow us to significantly reduce the factorial search space 
associated with determining function equivalence. 
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4.2 VECTOR SIGNATURE 

We introduce a new signature function that has proven to be an adequate initial filter for 
many problems. This signature takes advantage of the fact that the vector functions under 
consideration consist of multiple functions, each corresponding to a single output. 

Definition 16: Unit vector. A positive (negative) Boolean unit vector is a 
vector in which exactly one element has the value 1 (0) and all other elements 
have the value 0 (1). 

Definition 17: Vector input signature. For any vector of Boolean functions 
F(a)  = G,  GYs positive unit vector input signature is the sum of the function 
outputs (i.e., the cardinality of the on-set) when the positive unit vector with 
input ij equal to 1 is applied. 

n= 1 

where Uk = 1 if and only if k = j e 

The negative unit vector input signature is defined similarly. 

Definition 18: Vector signature. For any vector of Boolean functions 
F ( i )  = G ,  the function’s vector signature is an ordered set of (il(x, y) pairs, in 
which each pair corresponds to an input ij of Fand x (y) represents the 
positive (negative) unit vector input signature. 

Table 2 shows the results of applying the vector signature to the vector function of a four- 
bit ALU. The resulting vector signature is (2  x (1,7), 1 x (2, 2), 1 x (2,5), 6 x (2,7), 3 x (3,5), 
1 x (6Y5)I. 

4.2.1 Additional Vector Input Signatures 

The signature classes determined by the vector input signature under the positive and 
negative unit vectors partition the set of input variables into several signature classes. This 
information can be used to create nonunit vector input signatures. 
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When any signature class contains a 
single member (that is, no other input shares 
its (x, y) signature value), a correspondence 
is clearly identifiable. The vector signature 
for the four-bit ALU shown in Table 2 has 
two signature classes with only a single 
member (the signature classes for seZ3 and 
m). Recognizing correspondences for such 
variables is straightforward. A signature 
class with multiple members, however, does 
not differentiate among the inputs sharing 
the signature class. Such differentiation may 
be achieved through the use of additional 
vector signatures. 

For each signature class, we create a 
set of vectors that must create a new set of 
vectors, which allows additional vector input 
signatures to be computed and may thus 
differentiate the inputs within the initial 
class. For each positive or negative unit 
vector taken over the set of inputs in a 
signature class under study,. there are 2P 
assignments of values to the distinguishable 
inputs of the other p signature classes. Each 
of these vectors may be applied to produce 
an additional vector input signature. These 
additional vectors can be applied to create 
more signature classes, allowing more preci- 
sion in suspect sets. This process can be 
continued until all additional vectors have 
been exploited. 

Consider a function I? with seven 
inputs, a through g (Table 3). Let the inputs 
be partitioned by vector signature into three 
signature classes, as follows: (a, b) (c, d, e )  
(f, g). Consider the additional vectors that 
can be created for example function H that 
may be useful in differentiating input a from 
input b. 

TABLE 2 Vector Input Signature 
for the TI 54181 Four-Bit 
Arithmetic Logic Unita 

Vector Input Signature 
Input 
Name Positive Negative 

selO 
sell 
se12 
se13 
b3 
a3 
b2 
a2 
a1 
bl 
a0 
bO 
m 
Cn‘ 

2 
1 
2 
2 
2 
3 
2 
3 
3 
2 
2 
2 
6 
1 

7 
7 
7 
2 
7 
5 
7 
5 
5 
7 
5 
7 
5 
7 

a The positive and negative coordinate 
vector input signatures are shown for 
a four-bit ALU with selection inputs 
se10-3, mode input m, carry input 
Cn’, and data inputs a0-3 and bo-3. 
The vector signature partitions the 
function inputs into five signature 
classes: (1,7) = {sell, Cn’}, (2,2) = 
{se13}, (2,5) = {aO}, (2,7) = {selO, 
se12, b3, b2, bl ,  bo}, (3,5) = {al, a2, 
a3}, and (6 ,5 )  = {m). 

TABLE 3 Additional Vectors 

a b c d e f g  

0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  

0 0 0  
0 0 0  
1 1 1 
1 1 1 
0 0 0  
0 0 0  
1 1 1 
1 1 1 

0 0  
1 1 
0 0  
1 1 
0 0  
1 1 
0 0  
1 1 
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4.2.2 Other Considerations 

Vector signatures are an effective signature for multiple-output functions in which the 
number of inputs is not significantly larger than the number of outputs. Their effectiveness is not 
surprising when we consider that the number of outputs determines the size of the range of the 
signature function. (The range of the function is ]GI2 .) 

An output vector signature can also be computed by considering the number of vectors 
for which each output has the value one under the set of vectors, including the one vector, zero 
vector, and positive and negative unit vectors. This use of the vector signature has not yet been 
fully explored. 

Vector input signatures may also be useful in filtering the number of library entities that 
must be compared with the cluster. A nonunique key for each functional output can be created by 
concatenating the 1-sum of the zero vector, 1-sum of the one vector, sorted set of positive vector 
signatures, and sorted set of negative vector signatures. If the don’t care set for the cluster is 
empty, these keys can be used as hashing keys to locate the set of library entities that must be 
tested. In this way, all library entities that may be equivalent to the cluster can be identified in 
time linear to the number of cluster outputs, regardless of the size of the entity library. If the 
don’t care set for the cluster is not empty, a less efficient technique must be used. 

When the don’t care set is not empty, the functions must be normalized to their care sets. 
This can be accomplished by “masking” the outputs of the function to 0 under the don’t care set. 
The key created by the vector signature for this normalized function can then be compared with 
the normalized function signatures for each library entity. 

4.3 SEMANTIC MATCHING ALGORITHM 

Let 2(i) = 0’ be the vector of Boolean functions for some subcircuit. Let e(?) = y’ be the 
vector of Boolean functions for a high-level component. Semantic equivalence and input/output 
correspondences between the subcircuit and the high-level component can be determined by the 
semantic matching algorithm described below. 

4.3.1 Description 

Step 1: Create binary decision diagrams. Create BDDs for the outputs of each 
vector of Boolean functions. 
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Step 2: Determine signature classes. Determine the vector signatures for F and e and partition each function's input variables into signature classes. If the 
signature classes and partition sizes are not equivalent, the functions cannot be 
equivalent. 

Step 3: Determine suspect sets. For each input ij of the cluster function F ,  
create a suspect set Sj. The suspect set Sj is the subset of inputs of pattern 
function 6 that have the same signature as the signature of input $. Apply 
additional input signatures (Sections 2.7.2 and 4.2.1) to reduce suspect set size 
below threshold (Section 4.3.2) if possible. 

Step 4: Iterate though legal input correspondences. Eliminate all matchings 
that include a correspondence between a cluster function input ij and any 
pattern function input that is not in Sj. 

Step 5: Determine legal output correspondences. Compare each pair of BDDs 
representing a substituted cluster function output and a pattern function 
output. If an unique output matching for each pair is determined, a legal 
correspondence has been identified. 

4.3.2 Complexity 

The technique presented in Section 2.5 requires I ~l ! IGl !  comparisons. Our algorithm 
requires a lot fewer comparisons. 

Let n represent the cardinality of the largest input suspect set determined in Step 3. An 
upper bound on the number of legal input correspondences is n 1'1. As long as n is constrained to 
a reasonably small size (less than nine), it can be treated as a constant value c, and the input 
correspondence selection will be exponential in complexity: O( clFI). Reasonably small values of 
n can be achieved through pruning suspect set sizes by applying multiple signature values until 
all suspect set sizes fall below some threshold. 

Such pruning is effective for most components except those having large numbers of 
symmetric inputs (which are indistinguishable from Boolean signatures). In such cases, however, 
any input matching will succeed for the symmetric inputs, which actually simplifies the process 
of proving semantic equivalence, because a correspondence will be identified very early in the 
execution of the algorithm. 
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Although BDDs are an efficient mechanism for representing the functionality of most 
components, they may become intractably large for certain functions under some (or all) variable 
orderings (Bryant 1985). Since we can indicate a ‘‘good’’ variable ordering for our pattern 
function library, we can eliminate most BDD-based concerns. If the BDD for any cluster function 
output exceeds the size of the largest BDD representing a pattern function output, we can 
immediately discard that input matching and discontinue BDD generation, since no legal 
correspondence can exist between functions that have BDDs of different sizes under the same 
variable ordering. Pathological functions (such as multipliers) that have no efficient BDD 
representation remain an open issue. 

Since each cluster output BDD is tested against each pattern output BDD exactly one 
time in Step 5, the complexity of determining legal output correspondence is only O(IG\*). 

Therefore, the overall complexity of this approach is O( CI TI 161’) = O( c 1‘1). This exponential 
algorithm is a significant improvement over factorial methods and makes semantic matching 
feasible for most components of reasonable size. 
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5 RESULTS 

The algorithms discussed previously were implemented in C. Experiments were 
conducted on a Sun Ultra Enterprise 3000 running Solaris 2.5.1 with 256 MB of main memory 
and 879 MB of virtual memory. Experimental circuits were taken from the LGSynth93 
benchmark suite (McElvain 1993). 

5.1 SUBCIRCUIT ENUMERATION RESULTS 

The complexity of the enumeration problem can be clearly seen in Table 4. A 15-gate, 
two-bit adder has 3,408 unique subgraphs (114 valid subgraphs). These subgraphs can be 
enumerated in acceptable time (0.1 second of CPU time) by any of the three algorithms. Notice, 
however, the abrupt increase in subgraphs that results from the addition of only seven gates. The 
22-gate, three-bit adder generates 98,922 unique subgraphs (566 valid subgraphs). 

The increase in subgraphs is not related solely to the number of gates, of course. It also 
depends on the number of wires in the circuit and their configuration. However, the number of 
gates does provide a good rough metric for predicting the number of unique subgraphs. 

It is more difficult to predict the number of valid subgraphs. Every one of the valid 
subgraphs must be enumerated. Each of these subgraphs represents a possibly interesting 
subfunction of the circuit. For instance, in a three-bit adder, three subcircuits representing one-bit 
adders and two subcircuits representing two-bit adders will be enumerated, as will subgraphs that 
represent parts of two or more individual adders. Generating these subfunctions is important 
because they may be expanded to represent the functions that we are seeking, namely the one-bit 
adder or two-bit adder. 

The three algorithms presented in Section 3.2 have been applied to several graphs to 
demonstrate the improvement provided by the latter two algorithms. Table 4 lists the number of 
gates, number of connections, and the connectivity ratio ( I  connections I / I gates I)  of each of the 
circuits to be explored. It also lists the number of unique subgraphs and number of valid 
candidate subcircuits within the circuit. 

Table 5 displays the results of applying the three algorithms to the circuits. Included are 
the total number of subgraphs generated and the amount of processor time consumed. Each 
algorithm will generate and identify all of the candidate subcircuits. The difference in the 
performance of the algorithms is a result of the number of duplicate subgraphs that were created 
during the generation. 
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TABLE 4 Circuit Statistics 

Original Circuit No. of No. of Connectivity No. of Unique No. of 
Circuit Function Gates Connections Ratio Subgraphs Subcircuits 

add 1 l-bit adder 8 10 1.25 ’ 114 18 
add2 2-bit adder 15 20 1.333 3,408 108 
add3 3-bit adder 22 30 1.363 98,922 462 
b l  Logic 25 36 1.44 95,707 90 1 
z4ml 3-bit adder 30 42 1.4 NAa 4,360 
cm138a Logic 33 53 1.606 NA 29,362 
x2 Logic 54 104 1.923 NA 38,364 

a NA = not available; not computed because of complexity. 

TABLE 5 Results of Candidate Subgraph Generation 

1: NaYve 2: Valid 3: Ordered I 

CPU CPU CPU 
No. of Time No. of Time No. of Time Desired 

Circuit Subgraphs (second) Subcircuits (second) Subcircuits (second) Result 

add 1 27 1 0.1 39 0.1 30 0.1 18 
add2 1 1,807 0.1 347 0.1 229 0.1 114 
add3 4341096 4.2 2,034 0.1 , 1,174 0.1 566 
bl 559,115 2.0 103,78 0.1 2,062 0.1 90 1 
z4ml NAa NA 47,221 0.1 23,993 0.1 4,360 
cm138a NA NA 774,005 3.2 127,599 0.1 29,362 
x2 NA NA 978,074 1.2 168,072 0.8 38,364 

a NA = not available; not computed because of complexity. 

5.2 EQUIVALENCE CHECKING RESULTS 

Our algorithm for semantic matching was implemented by using the University of 
Colorado’s decision diagram library (Somenzi 1997). Table 6 compares our procedure with the 
factorial approach. For each component, it shows the size of the subcircuit, size for the BDD 
representation of the component’s pattern function (under some reasonable variable ordering), 
number of input matchings, and total number of BDD equivalence checks made during the 
program’s run time. The run time shown is the worst-case run time (a complete search of the 
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TABLE 6 Experimental Resultsa 

Correspondences 

Circuit No. of No. of BDD 
Input Matchings Checked 

CPU Time 
Name Inputs Outputs Size Method 1 Method 2 Method 1 Method 2 (second) 

C 1908 
alu2 
alu4 

f51m 

sct 
t48 1 
z4ml 

cc 

Pml 

33 
10 
14 
21 

8 
16 
19 
16 
7 

25 
6 
8 

20 
8 

13 
15 
1 
4 

127,349 
23 1 

1,452 
57 
73 
42 

102 
202 
47 

8.7e+36 
3.6e+06 
8.7e+10 
5.le+19 
4.0e+04 
2.le+l3 
1.2e+17 
2.le+13 
5 .Oe+03 

7.9e+12 
2.0e+00 
8.6e+03 
1.4e+07 
4.8e+0 1 
2.0e+05 
4.0e+07 
2.3e+07 
5 .Oe+03 

N A ~  
32 

6.9e+04 
1.5e+09 
4.3e+02 
2.8e+06 
6.0e+08 
2.3e+07 
2.0e+04 

NA 
0.2 

232.4 
37,675.5 

0.1 
273.4 

75,647.4 
88,354.5 

4.55 

a The circuits included in this table are a subset of the LGSynth93 benchmark suite. The results listed for Method 1 
are calculated for the factorial permutation approach (Section 2.5). The results presented for Method 2 are 
experimental results for a single vector signature implementation of the algorithm presented in Section 4. 

NA = not applicable. 

correspondence space). For nonsymmetric circuits, the time to determine a single correspondence 
can be considered roughly 50% of the overall run time. For circuits containing symmetries, the 
entire time is necessary to identify all legal correspondences, but only a fraction of the time is 
necessary to determine a single correspondence. 

The z4ml circuit (a three-bit adder) shows a case in which the inputs are indistinguishable 
from their vector signature, and thus the number of input matchings is 7!. Note that because the 
algorithm automatically prunes (i.e., reduces) the output search space, the number of 
comparisons is only 20,304, an order of magnitude less then the number of comparisons 
necessary in a 120,160 (7!4!) nonpruned search. 

The a h 4  circuit (a four-bit ALU) is complex enough to have fairly well-distributed vector 
signatures and thus is able to take advantage of vector signature information to recognize that 
only 8,640 of the greater than 87 billion possible input matchings can possibly produce a legal 
correspondence. The use of vector signatures has made this intractable comparison feasible. 
Furthermore, note that of the 3.5 million billion total correspondences (14!8!) possible, only 
69,411 comparisons are necessary. 

Using the vector signature to prune the input permutation search space of the C1908 
error-correcting circuit reduces the number of input matchings from 8.7 x 1036 to '7.9 x 10l2. 
While this practice certainly results in a significant reduction in search space, additional 
signatures need to be applied to permit semantic matching within a reasonable execution time. 
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Table 7 summarizes the results from an experiment to identify the functional components 
contained in a library netlist. Specifically, one- and two-bit adders were found in two- and 
three-bi t adder circuits. 

5.3 IDENTIFICATION OF FUNCTIONAL COMPONENTS 

By using the MI-Enum algorithm to identify candidate clusters and the MI-ID algorithm 
to check equivalence, we have created a tool that can find arbitrary library entities in a 
combinational circuit. The development of this tool is still in progress, but initial results prove 
that the concept is sound. 

As noted previously, the equivalence checking algorithm does not prune the number of 
input correspondences when vector signatures are used on symmetric functions such as the adder, 
although it does prune the number of output correspondences. It will be far more interesting to 
attempt to find a larger function (such as the 18 1 ALU) in a large netlist. 

TABLE 7 Results of Module Identification 
~ ~ 

No. of No. of No. CPUTime 
Circuit Gates Connections Module Found (second) 

2-bit adder 15 20 1-bit adder 2 0.5 
3-bit adder 22 30 1-bit adder 3 0.6 
3-bit adder 22 30 2-bit adder 2 0.6 
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6 FUTUREWORK 

This section briefly discusses some areas that could be logical next steps in solving the 
general RE problem by using the module identification method. It concentrates on those 
extensions that apply toward solving the initial combinational circuit problem introduced in 
Section 1. 

6.1 SUBCIRCUIT ENUMERATION ISSUES 

The preliminary effort made to create and implement the graph enumeration algorithm 
has raised many interesting issues and possible focus areas for future efforts. At this point, the 
algorithm operates primarily as a “brute force” method. This problem demands that all possible 
valid subgraphs be explored to ensure a complete modular matching. Many heuristics and 
pruning methods could be applied to the algorithm to allow it to operate in a reasonable amount 
of time for reasonably sized problems. 

6.1.1 Aggregation 

When a match is found between a library entity and a subcircuit, that subcircuit could be 
replaced with a single node that encapsulates the functionality of the module. This aggregation of 
the subcircuit nodes into a single node would reduce the order of the graph and therefore the 
growth of the pool of subcircuits. This approach would also gradually raise the level of 
abstraction. The matched modules would eventually exist in the circuit connected only by glue 
logic. Each of these modules would still have the same functionality as the original subcircuit but 
would be only a single node with multiple unique outputs. 

6.1.2 User Interaction 

If a user can visually locate areas of the circuit that look as if they may be repeated 
elements, the user can enter them into a meta-library. These elements can be located by structural 
matching techniques such as Subgemini (Ohlrich et al. 1993). Any time the repeated element is 
found, its nodes can be aggregated into a single node, thus reducing the order of the circuit. At 
this point, MI-Enum could be run on the new circuit as usual. 

6.1.3 Parallel Implementation 

This algorithm is inherently parallelizable. Each pool of subgraphs could easily be 
divided into any number of parts and parceled out to individual processors. The only effect would 
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be that some subgraphs might be checked more than once, but no more times than the number of 
processors involved. 

6.1.4 Preliminary Partitioning 

A method of addressing the problem of the intractability of large circuits involves the 
partitioning of the circuit before processing. Instead of attacking a problem of 10,000 gates, the 
circuit could be split into 100 circuits of 100 gates each. The obvious difficulty with this method 
is that a library module that exists in the circuit could be split across the cut boundary and never 
matched. The sliding window method discussed in Section 3.3 provides a solution that works 
well for reasonably sized circuits, but an extremely large circuit would benefit from initial 
partitioning. 

6.1.5 Primitive Modules 

To reduce the order and thus the processing time of the graph, it might be useful to 
investigate the use of primitive modules. These modules could consist of small common 
functions that are generally implemented as 5 to 10 gates. By including them in the library, the 
order of the graph could be greatly reduced by aggregation. 

6.1.6 Order Limiting 

To reduce the number of subgraphs generated, it helps to limit their order. For example, if 
the largest module in the library had 20 gates, the candidate subcircuits could be restricted to a 
maximum of 30 gates. Doing so would probably allow all of the likely implementations to be 
identified yet significantly reduce the number of subcircuits that need to be generated. 

6.2 SEMANTIC MATCHING ISSUES 

6.2.1 Effectiveness of Additional Filters 

The vector signature alone is not an effective filter for several of the circuits tested. 
Additional function filters, such as those described in Section 2.7.2, are necessary if this 
technique is to be used effectively. The effectiveness and the cost of each filter should be 
explored, and the identification of intractable problems, if any, should be facilitated. 
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In particular, the discrete Fourier function transformation (FFT) may allow the efficient 
determination of equivalence between output variables independent of input correspondences. If 
outputs can be efficiently determined, vector input signatures can consider the particular values 
of corresponding outputs rather than simple output 1-sums. This technique promises to 
significantly speed up the computation times reported herein if the FF” calculation can be 
determined efficiently. 

6.2.2 Don’t Care Optimizations 

The primary problem that must be addressed is the issue of don’t care optimizations. 
Such optimizations are prevalent, and any approach that does not take don’t care conditions into 
consideration cannot be completely successful. It is our intent to formally prove and 
experimentally demonstrate that structural BDDs (Doom and Wojcik 1997, Doom et al. 1998) 
can efficiently identify the don’t care set of any cluster. As a challenge, we might consider 
proving the equivalence between two binary coded decimal (BCD) adders for which the output 
functionality under non-BCD inputs is undefined. The equivalence between a BCD adder to 
which non-BCD inputs are never supplied and a non-BCD adder should also be provable. 

6.2.3 Canonical Variable Ordering 

A technique for canonically ordering variables based on the recursive sorting of truth 
tables by row and column sums is presented in (Wu et al. 1994). If this technique can be 
implemented efficiently, it will be completely unnecessary to consider searching the factorial 
matching space to determine P-equivalence. The canonical ordering for the cluster and the 
canonical order for the entity must indicate an appropriate matching if any such matching exists. 
A tool based on this mechanism should be developed and tested for efficiency as well as 
maximum problem size. As a truth-table-based technique, this canonicalization requires O(21 ) 
memory and time, which may limit its utility, but this technique is quite promising. 

This technique could be quite useful in performing (exact) equivalence matching, because 
we would no longer need to test equivalence under all input correspondences. We would merely 
need to determine the “unique” input order of the function before the test. This technique would 
be more efficient than current techniques for many functions, particularly those with a large 
number of inputs and a small number of outputs for which signature-based techniques may prove 
intractable. If there are no don’t cares, this technique can be used to hash to the matching library 
function, if any. If there are don’t cares, the canonicalization will have to be performed on each 
library unit after the mask is applied. 

To the best of our knowledge, no technique for canonicalizing the variables in a BDD has 
ever been proposed. Perhaps a metric (similar to the row and column sums) by which a BDD 
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could be recursively ordered could be determined. If so, this metric would be a significant 
contribution to the BDD field as well as RE. 

6.2.4 Intractable Functions 

Some functions are inherently difficult to describe and match when this technique is used. 
The multiplier and multiplexer are two such functions. The multiplier is quite sensitive to 
filtering, and the number of comparisons necessary is relatively small. However, each 
comparison takes a lot of time. Multipliers are well known to produce exponential graphs when 
represented as a BDD. Creating the BDD that represents the function of the multiplier under 
some variable ordering may be prohibitively time consuming. 

The multiplexer function, on the other hand, is almost completely insensitive to the vector 
filter function. A multiplexer consists of n control inputs, 2n data inputs, and a single output 
whose value is equal to that of the input selected by the control inputs. Although the n control 
inputs may be identified by the vector signature, all but two of the data inputs (the i and 0' lines) 
fall into the same equivalence class (since their behavior is never selected by the control inputs). 
If n is greater than four, there would be at least 14 (i.e., 24 - 2 = 16 - 2) input variables in the 
same vector class, requiring at least 14! comparisons, which is intractable. The equivalence 
algorithm can flag such clusters as being intractable comparisons, but some other method has to 
be used later to consider these cases. 

6.2.5 Sequential Circuits 

The identification of latches in a sequential circuit seems to be a simple problem, whereas 
the identification of larger sequential units (such as a shift register) seems to be very challenging. 
Once the identification of high-level functional units in both combinational and sequential 
netlists is accomplished, this information can be used by new tools to move understanding to the 
next level. 

We believe that once the problems regarding the identification of combinational circuits 
are solved, the identification of sequential circuits will be an obvious extension. Sequential 
elements tend to be clustered more regularly. After the high-level combinational entities between 
the sequential entities are partitioned out, the identification of the sequential entities should be 
less complex. 
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6.3 JOINT ISSUES 

6.3.1 Optimized Circuits 

Matching entities whose corresponding clusters have fewer inputs or outputs because of 
bridged inputs, stuck-at inputs, or neglected outputs is a difficult problem. No approach toward 
solving this problem seems promising at this time. A solution would most likely involve 
identifying the partial functions and directing the growth of the cluster. This issue remains 
unexplored. 

If the canonical form mentioned in Section 6.2.3 could be found, it might be useful in 
attacking the enumeration problem. By creating canonical keys for any function, we could create 
a library of “interesting” keys related to high-order digital devices. 

For any one-output cone of logic being tested, if its function was interesting @e., if the 
function’s canonical form matched one of the forms determined to be associated with one or 
more of the high-order devices), it would seem wise to expand the search around that cluster to 
attempt to find other interesting functions associated with the same device. If all of the functions 
for some device were discovered, we could replace the cluster with the device. 

This technique would not necessarily be better than any of the techniques that we are 
exploring now, but it does have some possible advantages. Most importantly, it would allow us 
to find a partial match for a high-order library device. For example, perhaps we could find three 
functions that matched the outputs of three of the five outputs of some device. In this case, it is 
quite likely that a detailed search of the area near the cluster would reveal the other two inputs 
(possibly passed over because of don’t care optimizations). This ability to recognize partial 
matches might make the basis for a good genetic algorithm (GA) evaluation function for a GA 
approach to partitioning, etc. 

6.3.2 Structural Matching 

Structural matching techniques are not a suitable solution to the general MI problem. 
Since there are an infinite number of ways in which any high-level entity might be implemented, 
identification of such entities by purely structural means is not an adequate solution. Because 
most circuits are developed by using cell libraries, however, structural techniques might be useful 
in finding additional instances of a high-level entity (which has been discovered by using 
functional techniques) elsewhere in the circuit. This approach would be most useful for a logical 
function with an empty don’t care set. 
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7 CONCLUSION 

As discussed in this report, we have met our goal of determining a general method for 
identifying functional components in a combinational circuit through the use of semantic 
techniques. This report presents an initial enumeration algorithm that is a working model on 
which future enumeration algorithms may be based. In addition, it presents a technique that 
allows a semantic match between a circuit cluster subcircuit and a high-level component to be 
determined in a tractable number of comparisons. It presents the underlying equivalence problem 
and provides an algorithm based on the concept of suspect sets capable of solving problems of a 
reasonable size. Preliminary experiments demonstrate the effectiveness of the technique when a 
single vector signature filter is used. Future goals include the introduction of additional filters to 
decrease the run time and increase the capabilities of the program. 

In the long term, we will use this technique as an RE tool. Semantic matching techniques 
allow us to achieve a functional specification of many digital designs by identifying clusters of 
logic that correspond to higher-level functional components. By identifying high-level 
components such as ALUs, adders, multiplexers, and other common functional entities within the 
circuit, we reduce the complexity required to produce functional descriptions and to identify data 
lines, control lines, and other “additional knowledge” (Ohmura et al. 1990) that might be useful 
in further specifying the design. Such an approach requires the implementation of efficient 
enumeration techniques as well as the identification and incorporation of don’t care conditions 
(Doom in progress) into the semantic matching algorithm. 
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