A hexagonal theory of flavor

PDF Version Also Available for Download.

Description

The authors construct a supersymmetric theory of flavor based on the discrete gauge group (D{sub 6}){sup 2}, where D{sub 6} describes the symmetry of a regular hexagon under proper rotations in three dimensions. The representation structure of the group allows one to distinguish the third from the lighter two generations of matter fields, so that in the symmetry limit only the top quark Yukawa coupling is allowed and scalar superpartners of the first two generations are degenerate. Light fermion Yukawa couplings arise from a sequential breaking of the flavor symmetry, and supersymmetric flavor-changing processes remain adequately suppressed. They contrast the ... continued below

Physical Description

691 KILOBYTES pages

Creation Information

Carone, C.D. & Lebed, R.F. May 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors construct a supersymmetric theory of flavor based on the discrete gauge group (D{sub 6}){sup 2}, where D{sub 6} describes the symmetry of a regular hexagon under proper rotations in three dimensions. The representation structure of the group allows one to distinguish the third from the lighter two generations of matter fields, so that in the symmetry limit only the top quark Yukawa coupling is allowed and scalar superpartners of the first two generations are degenerate. Light fermion Yukawa couplings arise from a sequential breaking of the flavor symmetry, and supersymmetric flavor-changing processes remain adequately suppressed. They contrast the model with others based on non-Abelian discrete gauge symmetries described in the literature, and discuss the challenges in constructing more minimal flavor models based on this approach.

Physical Description

691 KILOBYTES pages

Source

  • Journal Name: Phys Review; Journal Volume: D; Journal Issue: 60; Other Information: Submitted to Phys Review: Volume D, No. 60; PBD: 1 May 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ER/40150-1301
  • Report No.: WM-99-107
  • Report No.: JLAB-THY-99-11
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 753191
  • Archival Resource Key: ark:/67531/metadc707712

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carone, C.D. & Lebed, R.F. A hexagonal theory of flavor, article, May 1, 1999; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc707712/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.