SOME EFFECTS OF METALLIC SUBSTRATE COMPOSITION ON
DEGRADATION OF THERMAL BARRIER COATINGS

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

ABSTRACT
Comparisons have been made in laboratory isothermal and cyclic oxidation tests of the
degradation of oxide scales grown on single crystal superalloy substrates and bond coating
alloys intended for use in thermal barrier coatings systems. The influence of desulphurisation
of the superalloy and bond coating, of reactive element addition to the bond coating alloy, and
of oxidation temperature on the spallation behavior of the alumina scales formed was assessed
from oxidation kinetics and from SEM observations of the microstructure and composition of
the oxide scales. Desulphurisation of a nickel-base superalloy (in the absence of a Y addition)
resulted in an increase in the lifetime of a state-of-the-art thermal barrier coating applied to it
compared to a Y, free, non-desulphurised version of the alloy. The lifetime of the same ceramic
coating applied without a bond coating to a non-desulphurised model alloy that formed an
'ideal' alumina scale was also found to be at least four times longer than on the Y-doped
superalloy plus state-of-the-art bond coating combination. Some explanations are offered of
the factors controlling the degradation of such coatings.

BACKGROUND
As part of the Materials and Manufacturing segment of the U. S. Department of Energy's
Advanced Turbine System (ATS) program [1], efforts are being made to facilitate the scale-up
of single crystal casting processes for industrial turbine-sized vanes and blades [2,3] and to
develop improved thermal barrier coating systems for these components [4,5]. An integral part
of the casting program is the development of a production-scale process for desulphurising the
alloys to avoid the need for small alloying additions of yttrium, which are difficult to control in
the single crystal casting process without using alumina cores and face coats on the molds.

Studies by several groups, including Ikeda [6], Funkenbusch, Smeggil and Bornstein [7-9],
Luthra [10], Smialek, et al. [11-16], Schaeffer et al., [17], and Meier, et al. [18], have shown
that lowering the tramp sulphur content of alumina scale-forming alloys to sub-ppm (atomic)
levels can dramatically improve the resistance to scale loss by spallation. For those studies,
desulphurisation was typically achieved by hydrogen annealing of relatively thin specimens at
temperatures of 1200°C or greater, under conditions where the alloy surface remained scale-free
so that any sulphur diffusing to the surface could be removed by reaction with hydrogen.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Smialek [13] suggested that, for optimum improvement in resistance to spallation, the total sulphur content of a component should be reduced to less than that required to produce one monolayer upon segregation; for specimens of the thickness used in this study, this corresponded to approximately 0.4 ppma [14,16].

Comparisons of the influence of sulphur and reactive element additions led to the suggestion that the role of reactive elements such as yttrium is to prevent sulphur segregation during oxidation [7]. Identification of yttrium sulfides in the alloy substrate [19] was used to justify an argument for sulphur gettering by yttrium. However, others have proposed that the role of yttrium is to modify the surface energy of the relevant interfaces, thereby inhibiting the segregation of sulphur to those locations [20]. Observations also suggest that reactive element additions slow the rate of growth of alumina scales as a result of incorporation of the reactive element ions into the oxide and their segregation to the oxide grain boundaries [20-22].

The focus of the study reported here is developing a practical ‘ideal’ protective alumina scale on alloys used as bond coatings on nickel-base superalloys, as a contribution to maximising the life of the thermal barrier coatings systems (TBCs). This paper details the oxidation behavior in which one of the Ni-based single crystal superalloys, René N5 (General Electric Aircraft Engines) from the ATS single crystal casting program conducted by PCC Airfoils, Inc. [2], is used as the substrate. In addition, cast (not single crystal) β-NiAl doped with an optimum amount of Zr, which has been found to form an essentially ‘ideal’ alumina scale [21-23], was used as a experimental bond coat alloy.

EXPERIMENTAL PROCEDURES

A yttrium-doped single crystal superalloy, René N5, was used for comparison with desulphurised, Y-free versions of the same alloy (denoted as N5'). Desulphurisation was performed by PCC Airfoils Inc. [2] using a proprietary in-melt technique, a post-solidification hydrogen treatment, and a combination of both. Alloy N5'A is nominally René N5 without Y and not desulphurised; alloy N5'AH was hydrogen-desulphurised; alloys N5'B and N5'C were melt-desulphurised; and alloy N5'BH was melt-desulphurised and then hydrogen annealed. A Zr-doped NiAl alloy was produced by vacuum arc melting. The chemical compositions of the alloys are shown in Table I. The sulphur levels of the alloys subjected to desulphurisation were measured by the glow discharge mass spectroscopy technique (GDMS). At present there are uncertainties when using GDMS to measure very low levels of sulphur because of the lack of a sulphur standard in the appropriate range. Hence, the accuracy of the sulphur contents shown in Table I is in doubt. Nevertheless, in the absence of more definitive sulphur measurements, the values reported from GDMS analyses are used in the paper. Overall, the compositions of René N5 and the Y-free derivatives were close to the nominal composition.
with the exceptions that the Y content of René N5 was half that expected and the Ti contents of all the alloys were low. Note, also, that the alloys subjected to hydrogen annealing were not only desuphurised, but they were also essentially decarburised.

Specimens of approximate dimensions 20 x 10 x 1 mm were cut by electrode discharge machining from specially cast single crystal bars, so that the large surfaces of the specimens corresponded to the same crystal orientations as the surfaces of an airfoil. The specimen surfaces were polished through 600 grit SiC papers prior to oxidation; specimens intended for subsequent examination of scales by electron microscopy were polished through 0.3 μm alumina prior to oxidation (the difference in surface finish was found to make a small difference in the initial weight gain, but no difference in the shape of the oxidation curve). All specimens were measured to 0.01 mm and weighed to 0.01 mg, then ultrasonically degreased in acetone and methanol before oxidation. Specimens were suspended in the oxidation furnaces from Pt-Rh wires. Appropriate corrections for evaporative loss of Pt and Rh were made in evaluating the oxidation kinetics.

The cyclic oxidation test cycle involved heating from near ambient temperature to test temperature and holding at temperature for 1 h or 100 h, before cooling. Tests with a 1-h dwell time at temperature were conducted in an automatic rig in which individually suspended specimens were introduced directly into a hot furnace into which oxygen was slowly flowing. At the end of each exposure period, the specimens were withdrawn into individual ceramic housings for a 10-min. cooling period. This cycle was interrupted for weighing every 20 or 50 cycles. In a second cyclic oxidation test, individual specimens were placed in lidded, pre-annealed alumina crucibles and exposed to air in an electric box furnace. The specimens were loaded into the cold furnace, which was then heated and held at temperature for 100 h, and then allowed to cool, after which the specimens were removed and weighed. By weighing each crucible with and without the specimen, the weight change due to the total uptake of oxygen and the specimen weight change were obtained. For direct comparison, isothermal oxidation kinetics also were measured in dried oxygen in a Cahn model 1000 microbalance, which weighed to 0.01 mg. The runs were started by lowering specimens into a heated furnace; at the end of the exposure period, they were quickly removed from the furnace.

The test temperatures ranged from 1050 to 1200°C; the projected maximum temperature experienced by the bond coating-ceramic interface of TBC-bearing airfoils in advanced land-based gas turbines is at the low end of this range, whereas airfoils in aircraft gas turbines may experience peak metal temperatures at the higher end.

After oxidation the specimens were examined in a low-power stereo optical microscope. Selected specimens were mounted, cross sectioned and metallographically polished for
examination by conventional light microscopy. Both oxidised surfaces and polished cross sections were characterised using a scanning electron microscope (SEM) equipped with a field-emission gun (FEG) and energy-dispersive X-ray detector (SEM/EDS). Concentration profiles across mounted and polished cross sections were measured using wavelength dispersive spectroscopy in an electron probe microanalyser (EPMA).

EXPERIMENTAL RESULTS

Isothermal Oxidation

René N5

A parabolic plot of the isothermal oxidation kinetics for René N5 in oxygen at 1100, 1150, and 1200°C (Fig. 1a) indicates that the overall oxidation behavior of this alloy approximated a parabolic rate law over 100 h, even though the values of the rate law exponent \(n \) calculated from the data ranged from 1.9 to 3.6. These values are shown in Table II, which also lists derived parabolic rate constants \(k_p \). The scale thicknesses calculated from the microbalance data (assuming the scale to be all Al₂O₃) were 0.9, 1.4, and 4.1 μm at 1100, 1150, and 1200°C, respectively, which corresponded well with measurements from cross sections.

René N5 formed a grey-appearing, adherent oxide scale which, with increasing time and temperature, developed a blue cast associated with partial spallation of an outer layer of Ni,Al-based spinel. The surfaces also contained small (approximately 150-200 μm in diameter) blue-appearing areas of localised spallation which increased in number with time and temperature. These areas are shown in low-magnification topographical views of the scale after 100 h at 1150 and 1200°C in Fig. 1b and 1c, respectively, and were associated with 2 to 10 μm-sized Ta-rich oxide phases in the alloy surface. These blue-appearing areas were not present in the initial scale but developed with time. The blue appearance was associated with the initial, partial spallation of the spinel layer in the vicinity of Ta-rich particles. Fig. 2a indicates that Ta-rich particles that intersected the alloy surface were undercut by the growing alumina scale and effectively isolated from the alloy. At some point, the scale surrounding them fractured and spilled, typically at or near the metal-oxide interface (Fig. 2c). For the isothermally-exposed specimens, this event probably occurred on cooling from the test temperature, since the bare alloy surface was visible in plan views (Fig. 2b). On specimens exposed in the cyclic tests, these areas were overgrown with voluminous scales of mixed oxides.

Typical images of the intact oxide scales on René N5 are shown in plan view in Figs. 3a and b and in cross section in Figs. 3c-f. Tantalum was found in small (approximately 0.1 μm-sized) precipitates in the grain boundaries of the adherent alumina scale and in small particles in the outer scale, as is evident in cross sections after 100 h at 1150 and 1200°C (Fig 3c, d). Tantalum-rich particles incorporated into the alumina scale would be expected to migrate to the
outer surface of the scale [20,24]; since the number of such particles was greatly increased at 1200°C compared to 1150°C, it appears that they may have resulted from outward diffusion rather than being part of the initially-formed transient scale. The bulk of the relatively thick, outer layer of presumed transient scale was a Ni,Al spinel. Fracture cross sections (Fig. 3e,f) showed the structure of the main alumina scale to be mostly columnar, but the structure was not as consistently columnar as, for instance, on an ideally-doped β-NiAl alloy [22].

Y-Free and Desulphurised Alloys
The isothermal oxidation kinetics of the Y-free variants of René N5 with different degrees of desulphurisation are shown as parabolic plots in Fig. 4, and the calculated rate law exponents and derived parabolic rate constants are shown in Table II. In general, the isothermal oxidation behavior of the N5 alloys was little different from that of René N5. The rate constants in Table II suggest that the oxidation rate of René N5 was slightly slower than the Y-free alloys at all three temperatures, but any such trend was small.

The scale formed on alloy N5′A (not desulphurized) spalled extensively on cooling from the test temperatures. The appearance of the scales of the other N5′ alloys (desulphurized) was similar to that of those formed on René N5: they were essentially grey with a few blue spots and developed an increasingly blue cast and more numerous blue spots with increasing temperature. The surfaces of the scales formed on N5′AH after 100 h at 1150°C, and on N5′BH after 100 h at 1200°C are shown in Figs. 5a and b and 6a and b, respectively. On N5′AH, the circular (blue) areas did not exhibit spallation to the alloy surface, but the scale formed over these areas contained faceted crystals of NiO (Fig. 5b), and bright-appearing Ta-rich particles were evident on the surface of the alumina scale. Figure 6a indicates spallation to the alloy at some of the circular areas and along the edge of the specimen of N5′BH oxidised for 100 h at 1200°C. The surface of the intact scale exhibited large crystals of Ni,Al spinel (shown in Fig. 6b). Bright-appearing Ta-rich particles also were visible on the surface of this scale.

Fracture cross sections of these scales, shown in Figs. 5c and 6c, indicated that the main alumina scale on both alloys had a columnar structure that was as well developed as that on René N5, despite there being no Y dopant present. Since this structure is indicative of doping of the scales with a reactive element, in these cases the dopant is presumably Hf (Table I), although the transmission electron microscopy of these scales required to confirm this assumption has not yet been completed. In comparison with René N5, the alumina layer formed on N5′BH after 100 h at 1200°C was thinner, and the spinel layer was thicker. The thicknesses of the scales corresponded well with those calculated from the overall weight gains (assuming all the scale thickness was alumina).
Cyclic Oxidation

Rene' N5 and Desulphurised Variants

Cyclic oxidation kinetics (1 h cycles) of the alloys at 1100 and 1150°C are shown in Fig. 7a and b. While an improvement in resistance to scale spallation is obvious from the data at 1100°C when the sulphur level was reduced from 5-6 ppma (N5'A) to approximately 0.8 ppma (N5'C), in the absence of Y-doping there was not much kinetic discrimination among the alloys with lower sulphur levels, nor between Rene' N5 and the lower sulphur alloys at this temperature. It was assumed that the maximum in the specimen weight gain curve could be used to indicate the time at which major spallation of the scale started, and the isothermal kinetic data were used to estimate the oxide thickness at that time. For N5'A (not desulphurized), the estimated maximum scale thickness attained before spallation initiated was relatively small, approximately 0.9 μm. The scale thicknesses on the other alloys which did not exhibit major spallation ranged up to approximately 2.2μm.

At 1150°C, alloys N5'B and N5'C (1.5 ppma S and 0.8 ppma S, respectively) suffered weight losses due to scale spallation after shorter exposures than Rene' N5 and alloys N5'AH (1.3 ppma S) and N5'BH (0.6 ppma S). Cyclic oxidation results from other work in this study had indicated a consistent improvement in scale spallation behavior for alloys N5'AH, N5'BH, and N5'C, but the order of improvement was N5'BH>N5'AH>N5'C, although chemical analysis indicated that the sulphur content of N5'C was lower than for N5'AH. The estimated scale thicknesses at which major spallation started at 1150°C was 1.0 to 1.2 μm for N5'B and C, and 1.9 μm for Rene' N5. Alloys N5'AH and BH attained estimated scale thicknesses of 4.9 to 5.5 μm without apparent spallation. Fig. 8a and b presents a comparison of the cyclic and isothermal kinetics for Rene' N5, N5'A and N5'C at 1100 and 1150°C, respectively. Assuming that the difference between the isothermal and cyclic kinetic curves is a measure of scale loss by spallation in the cyclic test, the degree of spallation appears to decrease with decreasing S levels, and to increase with increasing temperature. The spallation observed from Rene' N5 apparently was a reflection of the fraction of the oxide surface affected by Ta-rich particles.

The kinetics from the test involving 100 h cycles at 1100°C are shown in Fig. 9. These data also indicate a trend to decreased scale spallation with decreased alloy sulphur level. Compared to the 1-hour cyclic test at 1100°C, this test provided more discrimination among the alloys, with results similar to the 1-hour cycle test at 1150°C. The fact that the N5'BH alloy (0.6 ppma S) exhibited early spallation was unexpected; the estimated scale thickness at which this started was 2.4 μm. The scale thicknesses corresponding to the onset of spallation on N5'A, N5'B, and N5'C were 0.6, 1.5, and 3.0 μm, respectively, whereas Rene' N5 and N5'AH attained estimated thicknesses of 4.7 to 5.0 μm without obvious spallation. The experimental procedures used in the 100-h cyclic test allowed a comparison to be made of the weight change of the specimen with the overall weight change due to oxygen pickup. As shown in Fig. 10,
such comparisons for René N5 and N5'AH indicate some degree of scale spallation from René N5, but very little spallation from N5'AH. One difference in spallation behavior was that on René N5 the oxide cap over the Ta-rich particles spalled together with surrounding oxide scale, whereas on N5'AH there was more fracturing of the spinel part of the scale but less loss.

Low-sulphur bond coating

A laboratory chemical vapor deposition (CVD) rig was modified to produce low-sulphur NiAl bond coatings on the desulphurised N5'C [0.8 ppm S] substrate [25]. EPMA concentration profiles through the approximately 25 μm coating thickness (Fig. 11a) indicated relatively uniform levels of Ni and Al (approximately Ni$_{1.2}$Al), as well as Co (approximately 9 wt %) and Cr (approximately 3 wt %). There were also indications that heavy elements such as Ta, W, and Re had diffused into the aluminide coating, to levels of less than 1 wt %. In backscattered electron images the coating grain boundaries appeared much lighter than the adjacent grains, implying that these heavy element dopants were most likely segregated at the metal grain boundaries. Incorporation of sulphur into the coating was examined by GDMS, using sputtering on a flat surface of a coated specimen. Despite problems in interpreting the concentration profiles due to variations in sputtering rate within the sampled area, profiles for the major elements were consistent with the EPMA data. The sulphur level of the coating shown in Fig. 11b was approximately 11 ppmw at the beginning of sputtering, fell into the 1 to 2 ppmw range after 10 min. of sputtering, and then rose to approximately 7.5 ppmw after 150 to 170 min. of sputtering. The concentration profiles for sulphur and oxygen made by the same technique in the uncoated N5'C substrate remained relatively flat, with an indicated sulphur level in the range 0.3 to 0.5 ppmw (0.6 to 0.9 ppma) (Fig. 11c).

The sulphur peak on the coating surface was found to result from the coating process (from Viton ‘O’-rings). This outer S-rich layer was removed before oxidation exposures by mechanically polishing the coating surface [25]. The inner sulphur peak appeared to be located in the same region as the refractory element-rich ‘diffusion region’ between the coating and the substrate. As shown in Fig. 12a, the scale spallation behavior of such a coating up to approximately 500 hours of thermal cycling in the 1 h cycle test at 1100°C was essentially the same as for the uncoated N5'C substrate, and was significantly improved compared to the undoped, non-desulphurised alloy (N5'A). When scale spallation occurred from the coating after 500 cycles, the loss of scale was from the vicinities of the surface grain boundaries of the coating; however, an adherent alumina scale continued to form over the grain bodies of this coating. Elements such as Ta, Co, Cr, and W from the superalloy substrate were enriched in the coating grain boundaries and led to the formation of less protective, less adherent oxides over these regions. Figure 12b and c illustrates the surface topography of the coating before and after oxidation and show the nature of the scale spallation. The formation of grain
boundaries in these coatings appeared to be associated with impurities such as oxide particles present on the substrate surface prior to coating.

TBCs on N5 Substrates

Figure 13a shows the oxidation kinetics from a cyclic 1-hour test at 1150°C for René N5, N5 A and N5C coated (on all sides) with a state-of-the-art platinum-aluminide bond coating and on one side with a top coat of yttria-stabilised zirconia (YSZ) deposited by electron beam physical vapor deposition (EB-PVD). The criterion used to assess failure of the TBCs was the loss of at least 20 percent of the ceramic layer on the flat surfaces of the specimens. The loss of small chips of ceramic from the edges of the specimens was discounted, since the specimen shape and dimensions were not optimised to accommodate a TBC. The ceramic layer on N5 A failed after 300 cycles; on N5C failure occurred after 450-500 cycles; whereas the TBC on René N5 failed after 650 cycles. On this basis, the life of the coating on the non-desulphurised, Y-free substrate (N5 A) was approximately one half that on René N5, whereas the life of the coating on N5C (=0.8 ppm S) was approximately 75 percent that of the Y-containing alloy.

TBCs on an ‘ideal’ alumina-forming bond coating

The same EB-PVD YSZ coating was directly applied to one side of specimens of the model bond coat alloy β-NiAl-Zr to demonstrate the potential spallation-free lifetime possible when the bond coating forms an ‘ideal’ alumina scale [23]. Previous studies [21,22] have shown that this alloy forms an α-Al₂O₃ scale that grows almost entirely by oxygen transport, at a rate up to 2 to 4 times slower than that formed on undoped NiAl (or other undoped alumina-forming alloys) and which shows only edge spallation at temperatures in the range studied here for times in excess of 2500 hours (oxide thickness greater than 9 µm). As shown in Fig 13b, the lifetime of the ceramic layer on this substrate was more than 2500 cycles, at least four times that of the René N5-PtAl bond coat system in the same test. Surprisingly, a YSZ coating deposited by plasma-spraying directly onto the polished surface (600 grit finish) of the β-NiAl-Zr alloy was found to spall only after 1200 cycles, which was almost double the lifetime of the René N5-PtAl-EB-PVD YSZ system in the same test [23].

DISCUSSION AND CONCLUSIONS

Desulphurisation of Y-free René N5 using a production-scale process resulted in excellent resistance to scale spallation under the conditions of the tests used in this study. Overall, there appeared to be little obvious difference in the performance of René N5 and a Y-free version desulphurised by post-solidification hydrogen annealing to an indicated sulphur level of 1.3 ppm (≤0.05 ppm C), or by a combination of in-melt processing and post-solidification hydrogen annealing to a sulphur level of 0.6 ppm (≤0.05 ppm C). In 1 h cycle tests at
1100°C, desulphurisation to the order of 1.5 ppma appeared sufficient whereas, in 100 h cycle tests at 1100°C and 1 h cycle tests at 1150°C, improved scale spallation resistance was not experienced until lower sulphur levels were achieved. Given the uncertainty of the final sulphur level in the desulphurised alloys, it appeared that the one of the best-performing alloys (N5’BH, 0.6 ppma S) probably was desulphurised to a level near that found to be optimum by Smialek [13] and which corresponded to a surface coverage of sulphur upon segregation of less than one monolayer. On the other hand, the other alloy (N5’AH) that performed very well had apparently been desulphurised to only 1.3 ppma.

The composition of René N5 includes small additions of Hf, Zr, and Ti (Zr is not a specified addition, but probably is present as an impurity with Hf) in addition to Y, all of which are elements that have been considered to exert a 'reactive element effect' during high-temperature oxidation. If indeed a major manifestation of the reactive element effect is to prevent or inhibit the segregation of tramp sulphur at the substrate-oxide interface, it is of interest to enquire why Hf or Zr did not exert any beneficial effect in alloy N5’A in the absence of Y. There is significantly more Hf present in the alloy than there is Y, and Hf as well as Y was found to be segregated to the grain boundaries (and presumably the scale-substrate interface) of the protective oxide formed on René N5 [23], although Ta was typically the dominant segregant. One factor may be that, while both Y and Hf form extremely stable oxides (with Y₂O₃ being the more stable, i.e. having a more negative free energy of formation than HfO₂), Y also forms very stable sulfides (Y₂S₃ and YS), whereas the stability of hafnium sulfide (HfS₂) is significantly lower, of the same order as the most stable sulfides of Ti and Zr [26]. Also, while both Y and Hf form very stable carbides and nitrides, in both cases the Hf compounds (HfC and HfN) have a significantly more negative free energy of formation than the Y compounds (YC₂ and YN). As pointed out by Sigler [26], these differences suggest that Hf most likely would react with carbon, nitrogen and possible oxygen before completely reacting with sulphur. In contrast, while Y will react strongly with oxygen and sulphur, it is likely to react preferentially with sulphur because of the much greater difference in free energy of formation between Y₂S₃ and Al₂S₃ than between Y₂O₃ and Al₂O₃.

The two Y-free, desulphurised alloys that exhibited the most improved resistance to scale spallation (N5’AH and BH) also had been decarburised as a result of the hydrogen annealing part of the desulphurisation process (see Table I). Although analysis is not presently available, it is possible that decarburisation influenced the improvement in resistance to scale spallation by, for instance, allowing Hf in the alloys to play a more active role (similar Hf in NiAl produce slow-growing, very adherent alumina scales). Further, the less detrimental role of Ta-rich particles on local scale spallation from these two alloys may also have been a result of the removal of carbon although there was no obvious change in the size or distribution of Ta-rich particles in the alloys.
The thermal cycle tests which used a 1 h dwell time at temperature were very similar to those used as standard screening tests in the gas turbine industry, intended as a simplified simulation of the most severe part of the duty cycle experienced by aircraft engines. In fact, the duty cycle of advanced power generation turbines will probably consist of a relatively fast ramp up from cold to maximum power, followed by long periods at essentially maximum power, punctuated by short periods of operation at partial load. The 1 h cyclic tests do not provide a representative simulation of this operation. Also, the maximum metal temperature experienced by the bond coating-ceramic interface is not expected to exceed approximately 1050°C, significantly lower than the peak temperatures of 1150 to 1175°C typically used in aircraft gas turbine simulation tests. From this perspective, comparison of the overall trends from the 1 h and 100 h cyclic tests at 1100°C reported here is pertinent. The observation that lower sulphur levels were required to resist scale spallation in the 100 h cycle test indicates that this was, in fact, a more severe test than the 1 h cycle test at the same temperature. Although the 1 h cycle test results in more frequent exposure to stresses from differential thermal expansion between the alloy and the scale, the incremental increase in scale thickness between individual cycles is relatively small so that, possibly, the increase in stress is easier to accommodate without scale buckling or cracking than with the thicker scale formed after a 100 h cycle. The longer cycle time allows time for growth of interfacial voids, which may also contribute to the increased spallation.

The initial results shown here for NiAl coatings suggest that satisfactory desulphurisation of coatings is probably achievable in the relatively near-term. However, the growth of less protective scale associated with oxidation of elements diffusing from the superalloy substrate along the grain boundaries of such coatings remains a problem. Since grain boundaries in these coatings appear to grow from impurities in the original substrate surface, this suggests that the number of grain boundaries could be reduced by relatively straightforward modification of the coating process, which could lead to a further improvement in resistance to scale spallation. Nevertheless, the added benefit of reactive element doping to give reduced scale growth rates remains desirable, since any alumina scale eventually will be prone to spallation when it attains some critical thickness at which the stresses from continued growth and the imposed stresses from thermal cycling and thermal expansion mismatch with the substrate and external YSZ layer cannot be accommodated without buckling or cracking.

The state-of-the-art Pt aluminide bond coating used in the TBC applied to specimens of René N5 typically forms an alumina scale that is very resistant to spallation. In the 1150°C/1 h cycle test, the observed increase in life with decreasing sulphur level in the substrate of the TBC suggests that sulphur from the substrate decreases the resistance to spallation of the scale formed on the Pt aluminide. This is surprising since, as detailed elsewhere [27], undoped Ni,Pt-Al (50 at% Al) alloys with sulphur levels of approximately 20 ppmA formed alumina
scales which were extremely resistant to spallation in this test at scale thicknesses greater than 4 μm. Also, there appeared to be significantly less Ta in the oxide scales formed on the state-of-the-art Ni,Pt aluminide bond coating applied to René N5 [28].

The effectiveness of the optimally-doped β-NiAl-Zr alloy (compared to the undoped Pt-aluminide layer on the Y-doped superalloy) in retaining an external YSZ layer in the thermal cycling tests resulted from four main factors. The first two factors were the reduced rate of growth of the oxide and the lack of void formation at the substrate-oxide interface, both of which are manifestations of reactive element doping in this alloy. The third and fourth factors resulted from the fact that a monolithic alloy was its own ‘bond coating.’ Hence, there were no unwanted elements able to transport to the oxidising surface and become incorporated into the scale, and there was always sufficient aluminum available for protective scale formation, since there was no loss by interdiffusion with a substrate. These advantages are obviously difficult to realise in a practical coating. A further difficulty is in controlling the dopant level and its uniform distribution in a practical coating process, especially since over- and under-doping may be detrimental to performance [22].

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Department of Energy Office of Industrial Technologies as part of the Advanced Turbine Systems Program, and in part by the Division of Materials Sciences under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation. We would like to thank Dr. B. Nagaraj of the General Electric Aircraft Engines Group for supplying samples of René N5 and the EB-PVD TBCs; Dr. W. Brindley of NASA-Lewis Research Center for applying the plasma sprayed ceramic coating; and Dr. C. T. Kortovich of PCC Airfoils, Inc., who supplied the desulphurised alloys. We would also like to thank colleagues at ORNL and in the aerospace alloy casting and coating supply industry for their useful comments and discussion throughout the course of this work.

REFERENCES

Fig. 1. Isothermal oxidation kinetics parabolic plot) of René 5 (a), and topographies of scale formed at (b) 1150°C and (c) 1200°C.

Fig. 2. Scale morphologies associated with local spallation on René N5 after isothermal oxidation at 1150°C for 100 hr showing (a) cross section showing incorporation of Ta-rich alloy phase into the scale; (b) topography of an area where spallation has occurred to the metal surface; and (c) a cross section of an area similar to (b) after 100 h at 1200°C.
Fig. 3. Morphology of scale formed on René N5 after isothermal oxidation for 100 h at 1150 and 1200°C: (a) and (b) plan views; (c) and (d) SEM of cross sections; and (e) and (f) fracture sections of the scales.
Fig. 4. Isothermal oxidation kinetics of desulphurised N5 alloys, parabolic plots.
Fig. 5. Morphology of scale formed on N5-AH after isothermal oxidation for 100 h at 1150°C: (a) and (b) plan views; (c) SEM of fracture sections of the scale.

Fig. 6. Morphology of scale formed on N5-BH after isothermal oxidation for 100 h at 1200°C: (a) and (b) plan views; (c) SEM of fracture sections of the scale.
Fig. 7. Cyclic oxidation kinetics of desulphurised N5 alloys, 1 h cycles.

Fig. 8. Isothermal and cyclic (1 h cycles) oxidation kinetics for René N5 and Y-free and desulphurised variants in oxygen at (a) 1100°C and (b) 1150°C.

Fig. 9. Cyclic oxidation kinetics (100 h cycles) at 1100°C in air.
Fig. 10. Cyclic oxidation kinetics (100 h cycles) at 1100°C in air showing the difference between the specimen weight change and the weight change due to the total oxygen uptake for (a) René N5 and (b) a Y-free variant (NS’AH) desulphurised to 1.3 ppma.

Fig. 11. Concentration profiles through the as-coated alloy by (a) EPMA; and (b) GDMS; and through the uncoated substrate by GDMS (c).
Fig. 12. Cyclic oxidation behavior (1 h cycles, 1100°C) of Y-free, desulphurised (0.7 ppma S) René N5 with and without a low-S NiAl coating (a) kinetics (b) coating topography before exposure (c) coating topography after exposure.

Fig. 13. Cyclic oxidation kinetics (1 h cycles, 1150°C) of substrates with TBCs (a) René N5 and Y-free and desulphurised variants (b) René N5 compared to β-NiAl-Zr.