Nucleon form factors '99

PDF Version Also Available for Download.

Description

The authors review recent progress in the experimental knowledge of and theoretical speculations about nucleon form factors, with special emphasis on the large Q{sup 2} region. There is now a long history of continuous progress in the understanding of electromagnetic form factors at large momentum transfer. After the pioneering works leading to the celebrated quark counting rules, the understanding of hard scattering exclusive processes has been solidly founded. A perturbative QCD subprocess is factorized from a wave function-like distribution amplitude {var_phi}(x{sub i},Q{sup 2}) (x{sub i} being the light cone fractions of momentum carried by valence quarks), the Q{sup 2} dependence ... continued below

Physical Description

91 Kilobytes pages

Creation Information

Jager, Kees de & Pire, B. June 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors review recent progress in the experimental knowledge of and theoretical speculations about nucleon form factors, with special emphasis on the large Q{sup 2} region. There is now a long history of continuous progress in the understanding of electromagnetic form factors at large momentum transfer. After the pioneering works leading to the celebrated quark counting rules, the understanding of hard scattering exclusive processes has been solidly founded. A perturbative QCD subprocess is factorized from a wave function-like distribution amplitude {var_phi}(x{sub i},Q{sup 2}) (x{sub i} being the light cone fractions of momentum carried by valence quarks), the Q{sup 2} dependence of which is analyzed in the renormalization group approach. Although an asymptotic expression emerges from this analysis for the x dependence of the distribution, it was quickly understood that the evolution to the asymptotic Q{sub 2} is very slow and that indeed some non perturbative input is required to get reliable estimates of this distribution amplitude at measurable Q{sup 2}.

Physical Description

91 Kilobytes pages

Source

  • Journal Name: Nucl.Phys. A666&667 (2000) 330-333; Other Information: Submitted to Nucl.Phys. A666&667 (2000) 330-333

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ER/40150-1471
  • Report No.: JLAB-PHY-99-22
  • Report No.: hep-ph/9909468
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 755807
  • Archival Resource Key: ark:/67531/metadc707668

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jager, Kees de & Pire, B. Nucleon form factors '99, article, June 1, 1999; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc707668/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.