Flow Patterns Around a Complex Building

PDF Version Also Available for Download.

Description

The authors compare the results of a computer simulated flow field around building 170 (B170) at Lawrence Livermore National Laboratory (LLNL) with field measurements. In order to aid in the setup of the field experiments, the simulations were performed first. B170 was chosen because of its architectural complexity and because a relatively simple fetch exists upwind (a field lies southwest of the site). Figure 1 shows a computational model of the building which retains the major architectural features of the real building (e.g., courtyard, alcoves, and a multi-level roof). Several important characteristics of the cases presented here are: (1) the ... continued below

Physical Description

2775 Kilobytes pages

Creation Information

Calhoun, R; Chan, S; Lee, R; Leone, J, Shinn, J & Stevens, D September 24, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors compare the results of a computer simulated flow field around building 170 (B170) at Lawrence Livermore National Laboratory (LLNL) with field measurements. In order to aid in the setup of the field experiments, the simulations were performed first. B170 was chosen because of its architectural complexity and because a relatively simple fetch exists upwind (a field lies southwest of the site). Figure 1 shows a computational model of the building which retains the major architectural features of the real building (e.g., courtyard, alcoves, and a multi-level roof). Several important characteristics of the cases presented here are: (1) the flow was assumed neutral and no heat flux was imposed at the ground, representing cloudy or morning conditions, (2) a simple canopy parameterization was used to model the effect of a large row of eucalyptus trees which is located to the northeast of the building, (3) the wind directions studied were 200, 225, 250 degrees measured clockwise from true north (the prevailing winds at LLNL are from the southwest in the summer), (4) the incoming wind profile was modeled as logarithmic with a maximum of about 3 meters per second. In addition, note that the building is rotated counterclockwise by 25 degrees with respect to the east/west axis. For convenience, the flow is modeled in a coordinate system that has been rotated with the building.

Physical Description

2775 Kilobytes pages

Source

  • American Meteorological Society Meeting, Long Beach, CA (US), 01/09/2000--01/14/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-135879
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/792340 | External Link
  • Office of Scientific & Technical Information Report Number: 756950
  • Archival Resource Key: ark:/67531/metadc707664

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 24, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 16, 2016, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Calhoun, R; Chan, S; Lee, R; Leone, J, Shinn, J & Stevens, D. Flow Patterns Around a Complex Building, article, September 24, 1999; California. (digital.library.unt.edu/ark:/67531/metadc707664/: accessed July 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.