Fig. 9 Effect of Pressure Gradient on Oil Recovery by Water Injection: Weakly Water-Wet, Configuration A ($C_{SA}=500$ ppm)
Fig. 10 Effect of Pressure Gradient on Oil Recovery by Water Injection: Intermediate-Wet Configuration A ($C_{SA}=1,000$ ppm)
Fig.11 Effect of Pressure Gradient on Oil Recovery by Water Injection for Different Wettability Conditions: Configuration A
Fig. 12 Effect of Initial Water Saturation on Oil Recovery by Water Injection: Weakly Water-Wet Configuration A (C_{SW}=500 ppm)
Fig. 13 Effect of Initial Water Saturation on Oil Recovery by Water Injection: Intermediate-Wet Configuration A ($C_{SA}=1,000$ ppm)
Water injection is stopped for 14 hours.

\[S_{wi} = 0 \]
\[l_{aw} = 1.0 \]

- \(q_1 = 5 \text{ cm}^3/\text{min}, \Delta p = 0.010 \text{ psi/cm} \)
- \(q_2 = 11 \text{ cm}^3/\text{min}, \Delta p = 0.014 \text{ psi/cm} \)
- \(q_3 = 27 \text{ cm}^3/\text{min}, \Delta p = 0.020 \text{ psi/cm} \)

Fig. 14 Effect of Pressure Gradient on Oil Recovery by Water Injection: Strongly Water-Wet Configuration B
Fig. 15 Effect of Pressure Gradient on Oil Recovery by Water Injection: Weakly Water-Wet ($C_{SA}=500$ ppm), Configuration B
Water injection is stopped for 14 hours.

$\text{Injection rate} = 26.2 \text{ cm}^3/\text{min}$

$\text{water injection time} (\text{min})$

$\text{Oil Recovery} (\% \text{ OOIP})$

$\text{Water Injection Time} (\text{min})$

$\text{Water Injection Time} (\text{rein})$

$\text{Fig. 16 Effect of Initial Water Saturation on Oil Recovery by Water Injection: Strongly Water-Wet, Configuration B}$
Fig. 17 Effect of Initial Water Saturation on Oil Recovery by Water Injection: Weakly Water-Wet ($C_{SA}=500$ ppm) Configuration B