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TO fuse or not to fuse: Fuser versus best classifier 

Nageswara S. V. Rao 
Oak Ridge National Laboratory, Oak Ridge, T N  37831-6355,USA 

ABSTRACT 
A sample from a class defined on a finite-dimensional Euclidean space and distributed according to  an unknown 
distribution is given. We are given a set of classifiers each of which chooses a hypothesis with least misclassification 
error from a family of hypotheses. We address the question of choosing the classifier with the best performance 
guarantee versus combining the classifiers using a fuser. We first describe a fusion method based on isolation 
property such that the performance guarantee of the fused system is at least as good as the best of the classifiers. 
For a more restricted case of deterministic classes, we present a method based on error set estimation such that the 
performance guarantee of fusing all classifiers is at least as good as that  of fusing any subset of classifiers. 

Keywords: Classification, finite sample analysis, distributed detection, fusion of classifiers 

1. INTRODUCTION 
Over the past decades several methods, such as nearest neighbor rules, neural networks, tree methods, and kernel 
rules, have been developed for designing classifiers. Often, the classifiers are quite varied and their performances 
are characterized by various smoothness and/or combinatorial parameters.’ The designer is thus faced with a wide 
variety of choices which are not easily comparable. It is generally known that a good fuser outperforms the best 
classifier, and at the same time, a bad fuser choice can result in a performance worse than the worst classifier. Thus 
it is very important t o  employ fusion methods that provide concrete performance guarantees - in particular, for the 
fuser to  be meaningful it must perform at least as well as the best classifier. If the underlying joint distributions are 
known, the classifiers can be combined optimally by using available distributed detection methods.2 In the special 
case of statistically independent classifiers, one can employ linear combinations to  combine outputs of  classifier^.^ 
In practical classifier systems, however, independence is seldom satisfied, and the underlying distributions are very 
hard to  estimate since sample is often the only information available. Although the theory of sample-based classifier 
design has been well developed,l an analogous theory for fusion of classifiers is developed only to  a limited extent. 
In this paper, we describe two fusion methods that  are applicable to  sample-based fusion of multiple classifiers. We 
restrict our attention to  the classifiers for which distribution independent performance guarantees can be provided. 
This formulation is based on Vapnik and Chervonenkis t h e ~ r y , ~ l ~  which has been extensively studied recently in the 
probably approximately correct (PAC) learning ~ a r a d i g m . ~ ! ~  

A classical pattern recognition problem is stated as follows: we are given an independently and identically 
distributed (iid) sample ( X l , Y l ) ,  (X2,  K),  . . ., (Xn,Yn), according to  an unknown distribution P X , ~ ,  where Xi E 3’ 
and E;: E (0,l) .  The problem is to  design a classifier 4 : sJZd H (0,l) based on the sample that  ensures a small value 
for the probability o f  masclassification given by 

w = 1 q$qx)?iY}d~x,Y, 
X 

where I D ( $ )  is the ind ica tor  f u n c t i o n  of the set D C 3‘ such that Ic (x)  = 1 if x E C and IC($) = 0 otherwise. We 
often suppress the operand x when it is clear from the context. 

In the formulation based on Vapnik-Chervonenkis theory:jl 4 is chosen from a class 3-1. Since P x , ~  is unknown, 
exact minimization of L( . )  is not possible. Instead, we consider the empirical error o f  masclassification given by 
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Let 4 minimize k(.) over 31. If 31 has finite Vapnik-Chervonenkis dimension Vx, it is well-known' that one can 
c 

guarantee 

if n is chosen to  be sufficiently large, irrespective of the distribution Px.17. This condition asserts that  the misclassi- 
fication error committed by 6 is within E of the best possible error, namely min L ( d ) ,  with a probability of a t  least 

1 - 6. 
, $ E l l  

We are given N such Classifiers corresponding to  the classes 3 1 1 , 3 1 2 , .  . . ,31,~ such that  

where 4; minimizes i(.) over Xi. If the classifiers are statistically independent, it is well-known that the higher thc 
number of classifiers the better is the performance of the fused system.' Such result is not true if independence is 
not satisfied. Our objective is to  "fuse" the classifiers so that the fused system performs at least as well as the best 
individual Classifier based on the sample only. If the joint error distributions of the classifiers are known, then the 
fusion problem can he solved using the existing maximum likelihood estimation methotls.2 The main challenge of 
the present formulation is due to  the lack of knowledge of error distributions. Problcnis of this kind are of relatively 
recent interest with most works dealing with computing a close-to-optimal fusion rule within a class' or sample- 
based implementation of fusion rules derived for known distributions casc.lo In particular, this is a special c u e  
of the generic sensor fusion problems studied Very few results exist for the present problem that 
guarantee that  the fused system is a t  least as good as the best classifier or best Combination of classifiers (with some 
e x ~ e p t i o n s l ~ ~ ~ ~ ) .  

In this paper, we describe two methods that enable us to judge the performance of the fused system. The first 
method is based on the isolation property" that enables us to compare the fused system with the best individual 
classifier. This method is simple to  apply and requires easily satisfiable criteria. The second method is based on 
intersections of error sets of the classifiers, and enables us to decide the relative performance of the fused system in 
comparison with any subset of classifiers. This method requires more stringent conditions. 

2. SINGLE CLASSIFIER 
We now summarize the known results for a single classifier.' The lowest possible error achievable by any deterministic 
classifier is given by the Baycs error L(d*) ,  where d* : '$2' H (0,1} is defined as 

Since the distribution is not known, 4' cannot be computed. Furthcrmore, based on a finite sample, only an 
approximation to  L(4') can be achieved in general. In particular, the performance of 4 tha t  minimizes Q.) can be 
characterized by the properties of 31. 

Let A be a collection of measurable sets of Rd. For (q, 2 2 , .  . . , 2") E (!Rd}., let Afd(21, 22,. . . , z,,) denote the 
number of different sets in 

( ( ~ 1 7 ~ 2 , .  .. , ~ n }  n A :  A E A}.  
The nth shutter coefficient of A is 

Then, the Vupnik-Cilervonenkzs ( V c )  dimension of A, denoted by I'd, is the largest integer k 2 1 such that  s(A, k) = 
2 k .  The following important identity5i7 relates the shatter coefficient to VC dimension: 



II 
Then we have the following result 

P;t,y sup li($) - L(q5)I > E 5 8 ~ ( d , n ) e - ~ " / ~ ~ .  
[+Ed 1 

which in turn implies that  

P;t,y [L($) - minL(q5)l > €1 5 8 ~ ( X , n ) e - " ' ~ / ~ ~ * .  
+EH 

128 
€2 

Thus, given a sample of size 
n = - (In s ( X ,  n) + ln(8/6)) 

P;,,[L($) - minL(4) > E] < 6, 
we have 

+EN 

irrespective of the distribution Px,~. 

3. ISOLATION PROPERTY 
We consider a family of fuser functions 3 : {f : {O,l}N cf {0,1}} such that  the fused output is given by 
f[&(X), &(X), . . . , ~ N ( X ) ] ,  denoted by f (Z) ,  where Z = (&(X), &(X), . . . , ~ N ( X ) ) .  The error probability of 
the fused system is given by 

LF(f) = 1 I{f(Z)fY]dPX,Y. 
Note that  Z is a deterministic function of X given the sample. For computational convenience, we utilize the following 
alternative formula 

L F ( f )  = j f W  - Y12dPX,Y. 
Note that  IF1 5 22N since F consists of at most all Boolean functions on N variables. Consider the function class 

~ = { f ( 4 1 ( x ) , 4 2 ( X ) , . . . , 4 N ( X ) )  : + I  EXl,d2 E X Z , - - - , $ N  € ' F I N } .  

Here f(q51(.), 4 2 ( . ) ,  . . . , 4 ~ ( . ) )  specifies a subset of Rd, and hence 6 specifies a family of sets of Rd. 
The fuser is obtained in two steps: (a) a training set (&,Yl), (Z2,f i) ,  . . ., (Zn,Yn), where Zi = ($l(Xi), &(Xi), 

. . . , i ~ ( X i ) > ,  is derived from the classifiers and the original sample, and (b) the fuser is derived by minimizing 
empirical error over 3. Let f* minimize LF(.)  over 3. Note that f* cannot be exactly computed since Px,y is 
unknown. Instead, we minimize the empirical error given by 

. n  

Let f^ minimize iF( . )  over F. 
N 

t = l  
If one of the classifier is to  be chosen, the lowest achievable error is given by minL(4f).  Since the classifiers 

can be correlated in an arbitrary manner, thc empirically best classifier &in = a r g m i n i ( & )  yields thc following 
guarantee 

t 

1 N 
p;t,y k ( 4 r n i n )  - minL(+t) t=1 > 6 < 61 + 62 + . . . + 6N. 

The fuser, thus, provides a better guarantee if 6~ < 61 + 62 + . . . + 6~ where 



Definition 1. The fuser class 3 satisfies the isolation p r ~ p c r t y ' ~ ~ ' ~  if it contains the following N functions: 
for all i = 1,2,. . . , N wc have f i ( Z l ,  ~ 2 , .  . . , Z N )  = zi .  

This property is trivially satisfied if 3 consists of all Boolean functions of AT variables. Although it is suficicnt 
to  include N functions in 3 to  satisfy this property, in general a richer class performs better in practice. 

Theorem 1. If the fuser class 3 satisfies the isolation property, then fuser f provides bcttcr guarantee than the 
best classifier under the condition 

Proof: We first have 

where the third step is a direct consequence of the isolation property. Consequently thc event 

{ L I ; . ( ~ )  - ?yL(&) > E} implies the event { L F ( ~ ^ )  - L F ( ~ * )  > E}. Thus we have - R [  

where the last step is due to  the finiteness of 

A minimal realization of this theorem can be based on 3 = {fl, f 2 , .  . . , f n }  as per the isolation property defined 
above. We wish to  emphasize that  this fusion method can be easily applied without identifying the best classifier, 
while still ensuring its performance in the fused system. The condition of Theorem 1 can be expressed in terms of 
the VC dimensions as follows 

0 

%. 
by noting that 6i = w e - r Z n / 1 2 8  for n > max(V,, , V x 2 , .  . . , V R , ~ ) . ~  

4. ERROR SET INTERSECTIONS 
We consider deterministic class in this section such that Y = I c ( X )  for some C E !Rd. In this case q!I* = C and 
L(q5') = L(C)  = 0. Furthermore, we have 

Q 

where Ex[.] denotes the expectation with respect to X. 
The outline of this fusion method is as follows: (a) first estimate thc sets over which the classifiers m a k '  c errors, 

and (b) compute the fuser as the  complement of the intersection of thcsc sets. Thus the fuser rnakcs an error only if 
all the classifiers make an error. Tlie effectiveness of the method depends on the efficiency of the error set estimation 
method. 



Figure 1. Illustration of intersection of error sets. 

We describe our method in two steps. For the sake of explanation, we first assume that  the 4;’s and C are known. 
We then replace 4; by $i  and estimate 4; @ C by Ei chosen from a suitable family &i. 

By denoting the set {x : 4(z) = 1) by 4 itself (with an abuse of notation), the error set of 4 is 4 9 c, where 
4 @ C is the symmetric difference given by (6 n C) U ( 4  n c). Under this notation, we have L(4)  =  EX[^ 8 C].  The 
ideal f u s e r  is given by 

N N 

j =  n(4; W) = u (4; Bc) 
i=l i= 1 

which implies that  it makes an error if and only if all classifiers make an error. Thus we have L ( j )  = EX 

Let B be a subset of {1,2, .  . . , N } ,  and f~ = n (4; @ C), which is a fuser based on a subset of the classifiers. Since 
jEB 

In particular, we have 
N 

t = l  
Ex[& @ C] = minL(4f) .  

Thus has a very important property: its performance is at least as good any subset of classifiers, i.e. one does not 
do better by considering a classifier subset; in particular, the fuser performs as well as the best classifier. 
Example 1. To illustrate the main idea, let C correspond to  a interval on real line as shown in Fig. 1. Let ‘Hi consist 
of intervals such that  the $7 corresponds to  an interval and 4; @ C corresponds to  union of at most two intervals as 
illustrated in Fig. 1. The intersection of error sets consists of unions of intervals whose total length is no larger than 
that  of intersection of error sets of any subset of classifiers. In the figure this set consists of a single interval, and 
note that  typically this interval is smaller in length than that  of any classifier. Cl 

Since i#~;’s and C are unknown, the ideal fuser f cannot be computed. In place of 4; we have its estimate given 
by the classifier $ i .  We then estimate for each classifier the error se t  given by $i @ C by employing the class &i. Let 
Ei E €i be an empiricalzy consis tent  estimator of & @ C in that  L(Ej) 5 e($, @ C). Then the fuser based on the 

sample is computed ils n Ei. 
N 

i=l 



Error set of estimated fuser 

Error set bf idea! fuser 
. I .  ; : :  

Error sei estim-te of classifier 2 I I .  . , .  , . 
. , .  . . . 4 .  . , :  

. / ;  , I :  
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I *  . : 
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Figure 2. Illustration of fuscr computation. 

Example 2. Consider that C and Px are unknown in the case of Examplc 1. In this case, Ei consists of unions of 
two intervals, arid in general we can compute only an approximation E i  to thc error set 4; C as shown in Fig. 2. 

The fuser is computed as thc complement of intersection of of the error sets, givcn by n ai, which in gcncral only 
N 

i=l 
1%' 

i = l  
provides an approximation to  the target n (4; C). 0 

The performance of this fusion method depends on that of .&'s as characterized in the following thcorcm. 

Theorem 2. Consider corisistcnt error set estimators such that i(&) 5 i(& 
the target class, and i(&) = min i ( 4 ) .  Then, me havc 

C), for i = 1,2,. . . , N ,  whew C is 
N 

dE7-li 

- N  
where f = n (4: @ C) is the ideal fuscr, and 4; is the best individual classifier, i.e. L(4f )  = min L(4) .  

i= 1 $€xi 

( N A )  (7) (7) ( N  ) 
Proof: By noting that  L E i  + L n = 1 and L n (df Q C) + L n (4; a C) = 1 wc first have 

i= 1 i=l i=l i=l 

This quantity is upper bounded by 



For the first term, we have' 

Thus, given $1,  $ 2 , .  . . , J N ,  with probability 1 - 8s n Ei ,n  e-e2n/128, we have 
( i I 1  ) 

where the last step is due to the empirical consistency of Ei's. Then simulateneously we have 

Thus we have 

For the second term, first we have' 

With probability 1 - 8s n 'Hi,n we have 
(iI1 ) 

where the second inequality is due to  the empirical minimization property of 47, i.e., i ( $ i  @ C) 5 min i(+ C).  4EHi 

Thus, with probability 1 - 8 e-e2n/512 we simultaneously satisfy the two following 
conditions 

Hence, with the same probability we have 

and hence the theorem. 0 

Corollary 1. Since L(f) 5 L ( ~ B )  5 minL(+;), with the same probability as in Theorem 2, we have both the 
following guarantees 

N 

1=1 



L 
(a) Classifier region (b) Error set of classifier 

(c) Intersection of error sets of two classifier 

Figure 3. Illustration for Example 3. 

under the conditions of the theorem. 0 
Recall from the previous section that 

Thus, the guarantee of this method is better under the condition 

In general, for two family of sets A and B, we have 

which make this condition difficult to  satisfy in terms of the general upper bound. In practicc, s(d n B, n)  could be 
much smallcr. 

The applicability of Theorem 2 depends on the choice of l i ' s .  We now consider two illustrative examples. 
N 

i= 1 
Example 3. Consider that C is a d-rectangle, i.e. C = n [li, h i ]  for l i  5 hi, li, h i  E 8 (Fig. 3(a)). Then 7-1i can 

be a set of d-rectangles, and thus V,; 5 2d.' Since X-fold intersection of d-rectangle is also a d-rcctanglc, the VC 

dimension of n 7-1; is upper bounded by 2d. Let R be set of all d-rectangles, and hence VR = 2d.  Now we can choose 

Ei = (c1 @ cz : c1, c2 E R},  i = 1 ,2 , .  . . ,N, which makes it empirically consistent with any $ i  @ C. In this c u e  

n &j consists of unions of at most 2iV rectangles as shown in Fig. 3, and thus its VC dimension is upper bounded 

N 

i= 1 

N 

I 

i= 1 
by4Nd.  0 



Figure 4. Illustration for Example 4. 

Example 4. We now consider a more restrictive and two-dimensional version of Example 3, where we stipulate that 
& C C or C C & for i = 1,2,. . . , N .  Such classifiers can be easily realized by computing the largest or smallest 
rectangles that  include all positive examples. In this case the error sets are “rectangular rings” as shown in Fig. 4(a). 
As result, the intersection of error sets consists of at most two rectangles as shown in Fig. 4(b) and (c), assuming the 
&’s are all distinct. Thus for this case, we have Vxi 5 4. The VC dimension of the error sets is no more than 8, and 
that  of their intersection is also no more than 8. In this case the condition of the Theorem 2 is easily satisfied. 0 

5. CONCLUSIONS 
We presented two methods for fusing classifiers so that the fused system provides better performance guarantees 
than the best classifier. Under additional conditions of deterministic classes and consistent error set estimates, we 
showed that  the fused system provides better guarantees than any subset of the classifiers. There are several avenues 
for future research. First, extensions of the second method to  more general cases such as probabilistic classes and 
regression estimation, will be of interest. Second, the notion of metafusers17 that  combine : !le fusers is very appealing. 
For the first method based on isolation property, metafusers do not offer much more than what is feasible by fusing all 
classifiers, i.e. the fused system simply retains the performance of the best classifier. On the other hand, the second 
method might provide a performance significantly better than the best classifier, and hence a metafuser might reduce 
error below the levels possible by individual fusers. Such reduction is possible only when accurate estimation of error 
sets can be carried out efficiently. It would of future interest to  investigate the performance trade-offs involved in 
such metafuser design. 
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