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To fuse or not to fuse: Fuser versus best classifier

Nageswara S. V. Rao
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6355,USA

ABSTRACT

A sample from a class defined on a finite-dimensional Euclidean space and distributed according to an unknown
distribution is given. We are given a set of classifiers each of which chooses a hypothesis with least misclassification
error from a family of hypotheses. We address the question of choosing the classifier with the best performance
guarantee versus combining the classifiers using a fuser. We first describe a fusion method based on isolation
property such that the performance guarantee of the fused system is at least as good as the best of the classifiers.
For a more restricted case of deterministic classes, we present a method based on error set estimation such that the
performance guarantee of fusing all classifiers is at least as good as that of fusing any subset of classifiers.

Keywords: Classification, finite sample analysis, distributed detection, fusion of classifiers

1. INTRODUCTION

Over the past decades several methods, such as nearest neighbor rules, neural networks, tree methods, and kernel
rules, have been developed for designing classifiers. Often, the classifiers are quite varied and their performances
are characterized by various smoothness and/or combinatorial parameters.! The designer is thus faced with a wide
variety of choices which are not easily comparable. It is generally known that a good fuser outperforms the best
classifier, and at the same time, a bad fuser choice can result in a performance worse than the worst classifier. Thus
it is very important to employ fusion methods that provide concrete performance guarantees — in particular, for the
fuser to be meaningful it must perform at least as well as the best classifier. If the underlying joint distributions are
known, the classifiers can be combined optimally by using available distributed detection methods.? In the special
case of statistically independent classifiers, one can employ linear combinations to combine outputs of classifiers.
In practical classifier systems, however, independence is seldom satisfied, and the underlying distributions are very
hard to estimate since sample is often the only information available. Although the theory of sample-based classifier
design has been well developed,! an analogous theory for fusion of classifiers is developed only to a limited extent.
In this paper, we describe two fusion methods that are applicable to sample-based fusion of multiple classifiers. We
restrict our attention to the classifiers for which distribution independent performance guarantees can be provided.
This formulation is based on Vapnik and Chervonenkis theory,*® which has been extensively studied recently in the
probably approzimately correct (PAC) learning paradigm.®?

A classical pattern recognition problem is stated as follows: we are given an independently and identically
distributed (iid) sample (X1,Y1), (X2,Y2), ..., (Xn,Ys), according to an unknown distribution Py y, where X; € ¢
and ¥; € {0,1}. The problem is to design a classifier ¢ : R¢ i+ {0,1} based on the sample that ensures a small value
for the probability of misclassification given by

L(¢) = / Itp(x)#v}dPx y,
X

where Ip(z) is the indicator function of the set D C R? such that Ic(z) = 1 if z € C and I¢(z) = 0 otherwise. We
often suppress the operand x when it is clear from the context.

In the formulation based on Vapnik-Chervonenkis theory,>! ¢ is chosen from a class H. Since Py y is unknown,
exact minimization of L(.) is not possible. Instead, we consider the empirical error of misclassification given by

. 1 <&
L(¢) =~ > Isxoev-
=1
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Let q§ minimize i() over H. If H has finite Vapnik-Chervonenkis dimension Vy, it is well-known! that one can

guarantec
P2 IL(¢) —minL €] <6
Xy |L(9) o (@) >¢| £
if n is chosen to be sufficiently large, irrespective of the distribution Py y. This condition asserts that the misclassi-
fication error committed by ¢ is within ¢ of the best possible error, namely ;mlr} L(¢), with a probability of at least
€

1-6.

We are given N such classifiers corresponding to the classes H;, Ha, ..., Hy such that
n z. _ . ]
Py y | L(#i) min L(¢) > €| <6

where @; minimizes L(.) over M;. If the classificrs are statistically independent, it is well-known that the higher the
number of classifiers the better is the performance of the fused system.®  Such result is not true if independence is
not satisfied. Our objective is to “fuse” the classifiers so that the fused system performs at least as well as the best
individual classifier based on the sample only. If the joint error distributions of the classifiers are known, then the
fusion problem can be solved using the existing maximum likelihood estimation methods.? The main challenge of
the present formulation is duc to the lack of knowledge of error distributions. Problems of this kind are of relatively
recent interest with most works dealing with computing a close-to-optimal fusion rule within a class? or sample-
based implementation of fusion rules derived for known distributions case.l® In particular, this is a special case
of the generic sensor fusion problems studied recently.!'"!®  Very few results exist for the present problem that
guarantee that the fused system is at least as good as the best classifier or best combination of classifiers (with some
exceptions!®1%),

In this paper, we describe two methods that enable us to judge the performance of the fused system. The first
method is based on the isolation property!® that enables us to compare the fused system with the best individual
classifier. This method is simple to apply and requires easily satisfiable criteria. The second method is based on
intersections of error sets of the classifiers, and enables us to decide the relative performance of the fused system in
comparison with any subset of classifiers. This method requires more stringent conditions.

2. SINGLE CLASSIFIER

We now summarize the known results for a single classifier.! The lowest possible error achievable by any deterministic
classificr is given by the Bayes error L(¢*), where ¢* : ®¢ — {0,1} is defined as

1 0 otherwise

Since the distribution is not known, ¢ cannot be computed. Furthermore, based on a finite sample, only an
approximation to L(¢*) can be achicved in gencral. In particular, the performance of ¢ that minimizes L(.) can be
characterized by the properties of H.

Let A be a collection of measurable sets of RY. For (z1,22,...,2,) € {R4}", let Ng(21, 22,...,2,) denote the

number of different sets in
{{z1,22,...,za}J N A: A € A}

The nth shatter coefficient of A is

s(A,n) = ma Na(z1,22,. .., 2n).

X
(21,22,....20 ) E{RI}"

Then, the Vapnik- Chervonenkis (VC) dimension of A, denoted by Vy, is the largest integer k > 1 such that s(A, k) =
2. The following important identity®7 relates the shatter cocfficient to VC dimension:

7 ifn < Vg
S(A’”)'{z""‘ ifn > V4

Va!




Then we have the following result

P}y [sup |f/(¢) - L(¢)| > e} < 8s(A4, n)e""‘z/”.
| ea

which in turn implies that

-

Py y |L(9) - érélln] L(¢)| > e] < 8s(H, n)e—nez/ms'

Thus, given a sample of size

n= —1;;— (Ins(H,n) +1n(8/6))

we have

P y[L(9) - min L(¢) > ¢ < 5,

irrespective of the distribution Px y.

3. ISOLATION PROPERTY

We consider a family of fuser functions F : {f : {0,1}" ~ {0,1}} such that the fused output is given by
Fl$1(X), 2(X), ..., én(X)], denoted by f(Z), where Z = (¢1(X),d2(X),...,dn(X)). The error probability of
the fused system is given by

Lr(f) = / Iifzy#vydPx,y.

Note that Z is a deterministic function of X given the sample. For computational convenience, we utilize the following
alternative formula

Le(f) = [11(2) - YPdPxy.
Note that |F| < 22" since F consists of at most all Boolean functions on IV variables. Consider the function class

G ={f($1(X),62(X),...,¢n(X)) : 61 € H1,¢2 € Ha,..., N € Hn}.

Here f(#1(.),¢2(.),.-.,9n(.)) specifies a subset of %, and hence G specifies a family of sets of .

The fuser is obtained in two steps: (a) a training set (Z1,Y1), (Z2,Y2), -, (Zn, Ya), Where Z; = (61(X), $2(X3),
vy dZN(X,-)), is derived from the classifiers and the original sample, and (b) the fuser is derived by minimizing
empirical error over . Let f* minimize Lp(.) over F. Note that f* cannot be exactly computed since Px y is
unknown. Instead, we minimize the empirical error given by

Le(f)= 2 3 1A(Z) - Vi

Let f minimize Lp(.) over F.

N
If one of the classifier is to be chosen, the lowest achievable error is given by mi{lL(qu ). Since the classifiers
1=

can be correlated in an arbitrary manner, the empirically best classifier ¢min = arg min i(qu) yields the following
k3
guarantee

o N
Pty [L(¢min) - rin=i{1L(¢;-‘) > e] <8 +6+...+6p.

The fuser, thus, provides a better guarantee if §p < 6; + 62 + ...+ 65 where

PRy [Le(i) - min267) > ] <er.



Definition 1. The fuser class F satisfies the isolation property!®!7 if it contains the following N functions:
forall i =1,2,...,N we have fi(21,22,...,2~8) = z;.

This property is trivially satisfied if F consists of all Boolean functions of N variables. Although it is sufficient
to include IV functions in F to satisfy this property, in general a richer class performs better in practice.

Theorem 1. If the fuser class F satisfies the isolation property, then fuser f provides better guarantee than the
best classifier under the condition

N
1 2n/2
Proof: We first have

Le(f) = min/[f(Z)—Y]2dPx.Y

ferF

N
< grlzigl/[fi(z) -Y]*dPxy
<

N .
min /[éi(X) - Y[ dPxy

N N )
- ’?:‘{‘/I{c‘s,-(X>¢Y}dpx.Y = min L($;)

where the third step is a direct consequence of the isolation property. Consequently the event

. N _ . R
{Lr(f) - min L(¢;) > €} implies the event {Lp(f) — Lp(f*) > €}. Thus we have

Py [Let) - min 2 >

IN

Piy [Le(f) = Le(f) > ¢
2| Fle=<"n/?

IA

where the last step is due to the finiteness of [F|.* O

A minimal realization of this theorem can be based on F = {f1, fa,..., fn} as per the isolation property defined
above. We wish to emphasize that this fusion method can be easily applied without identifying the best classifier,
while still ensuring its performance in the fused system. The condition of Theorem 1 can be expressed in terms of
the VC dimensions as follows

N Vi,
(n)"™: _2g3n/128
1F] < 45 L ~daan/ios,

i

. Vi
by noting that §; = %e /128 for n > max(Viy,, Vi, - - -, Vi )4

4. ERROR SET INTERSECTIONS

We consider deterministic class in this section such that Y = Ic(X) for some C € RY. In this case ¢* = C and
L(¢*) = L(C) = 0. Furthermore, we have

L(¢) = /I{¢(x)¢1c(X)}<lPx = Ex{I{sx)#1c(x01 )

where Ex[.] denotes the expectation with respect to X.

The outline of this fusion method is as follows: (a) first estimate the scts over which the classifiers make errors,
and (b) compute the fuser as the complement of the intersection of these sets. Thus the fuser makes an error only if
all the classifiers make an error. The effectiveness of the method depends on the efficiency of the error set estimation
method.
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Figure 1. Illustration of intersection of error sets.

We describe our method in two steps. For the sake of explanation, we first assume that the ¢}’s and C are known.
We then replace ¢; by ¢; and estimate ¢; & C by F; chosen from a suitable family &;.

By denoting the set {z : ¢(z) = 1} by ¢ itself (with an abuse of notation), the error set of ¢ is ¢ & C, where
¢ © C is the symmetric difference given by (¢ N C) U (¢ N C). Under this notation, we have L(¢) = Ex[¢ & C]. The
ideal fuser is given by

—
f= ﬂ 6 ©C) = U(qs*@c

=il

which implies that it makes an error if and only if all classifiers make an error. Thus we have L(f) = [ Ngre C’)]
i=

Let B be a subset of {1,2,...,N}, and fp = W, which is a fuser based on a subset of the classn‘iers. Since
j€B

N

ﬂ (¢r@C)C ﬂ (¢J ® C), we have

i=1

N
L(f) < Bx [ﬂ(qs:-' ® C)

i=1

min  Ex N (¢;eC)| = L(fB).

T BC2M1:2n h
&2 j€B

In particular, we have

. il N N
L(f) = Ex [ﬂ(ﬁ ®C)| < I}lzi{lEX[fﬁ? ®C)= Il.Ilzi{lL(@)-

i=1

Thus f has a very important property: its performance is at least as good any subset of classifiers, i.e. one does not
do better by considering a classifier subset; in particular, the fuser performs as well as the best classifier.

Example 1. To illustrate the main idea, let C correspond to a interval on real line as shown in Fig. 1. Let H; consist
of intervals such that the ¢} corresponds to an interval and ¢} @ C' corresponds to union of at most two intervals as
illustrated in Fig. 1. The intersection of error sets consists of unions of intervals whose total length is no larger than
that of intersection of error sets of any subset of classifiers. In the figure this set consists of a single interval, and
note that typically this interval is smaller in length than that of any classifier. O

Since ¢}’s and C are unknown, the ideal fuser f cannot be computed. In place of @7 we have its estimate given
by the classifier ¢, We then estimate for each classifier the error set given by ¢, @ C by employing the class &;. Let
; € & be an empzrzcally consistent estimator of ¢; ® C in that L(E;) < L(¢; @ C). Then the fuser based on the

sample is computed as ﬂ E;.
i=1
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Figure 2. Illustration of fuser computation.

Example 2. Consider that C' and Py are unknown in the case of Example 1. In this case, & consists of unions of
two intervals, and in general we can compute only an approximation E; to the crror set ¢ @ C as shown in Fig. 2.

N
The fuser is computed as the complement of intersection of of the error sets, given by [ E;, which in general only
i=1
N
provides an approximation to the target (] (¢; @ C). O
i=1

The performance of this fusion method depends on that of E;’s as characterized in the following theorcm.

Theorem 2. Consider consistent error set estimators such that L(E;) < L(d; @ C), fori = 1,2,..., N, where C is

N
the target class, and L(¢;) = ‘;2%1 L(¢). Then, we have

~L(f)|>¢| <8 [s <ﬂ Ei,n> +s (h H;,n)] e—€'n/512

(qS ® C) is the ideal fuser, and ¢; is the best individual classifier, i.e. L(¢}) = rrelm L(¢).

where f

Proof: By noting that L ﬂ + L ﬂ Ei)=1land L ﬂ rel) |+ L ¢‘ ® C)> = 1 we first have
X

P ]

i W) t(we0)

”DZ

N ]
NE|-L[N@eC)]||>el < P2
i=1

i=1

This quantity is upper bounded by

() +{fe=c)

>€/2f + Py

> 6/2] .




For the first term, we have!

Py sup
E1,Eq,...Ex

N . N
L ( E,-) -L ( E,-)
i=1 =1

.2
Si,n) e~ /128 we have

N
> e/4l < 8s (ﬂ €i,n> e’ n/512,

i=1

Thus, given ¢;1, 432, ey ¢§N, with probability 1 — 8s (

=1

N N (N

L (ﬂEz) SL(ﬂE,) +e/4<L <ﬂ ¢i@C> +e/4

i=1 i=1 i=1

where the last step is due to the empirical consistency of E;’s. Then simulateneously we have
~ N ~ N ~
L (ﬂ qsieac) +efd<L (ﬂ ¢i€BC> +e/2.
i=1 i=1

Thus we have

For the second term, first we havel

L (ﬂ(as,- EBC)) iy (ﬂ(«zsi ® 0))

i=1

Pz sup
1,02, 6N

N
> 6/4] < 8s (n 'H,',n) e~ /512,

i=1

N
With probability 1 — 8s (ﬂ ’H,-,n) e~<'n/512 we have

=1
N N N N
L (ﬂ(éieBC)) <L (ﬂ(q%- @C)) +efa< i <ﬂ(¢;‘ @ C)) +e/a<L (ﬂ(¢;‘ @C)) +e¢/2,

where the second inequality is due to the empirical minimization property of ¢7, i.e., i(d;, 8C) < ;217111 f/(qﬁ 8 C).

N N
Thus, with probability 1 — 8 [s (ﬂ 28 n) +s (ﬂ H;, n)] e=€' /512 e simultaneously satisfy the two following
i=1 i=1

conditions

o (f18) -2(fwe0)

i=1

and hence the theorem. O

= = N
Corollary 1. Since L(f) < L(fB) < rr_1_1{1L(¢;‘), with the same probability as in Theorem 2, we have both the

following guarantees
N N
n - £ n a N *
PX[L<QE,-’—L()‘B)>6} and PX[L(QEi)—rZ;E?L(qSi) >e}




(a) Classifier region (b) Error set of classifier

(c) Intersection of error sets of two classifier

Figure 3. Illustration for Example 3.

under the conditions of the theorem. O

Recall from the previous section that
o N N 2
P)rz [L(émin) = In_l{lL(d):) > 6] < Z o; = E s(H;,n)e™* n/128
- i=1 i=1

Thus, the guarantee of this method is better under the condition

N N N
[s (ﬂ 8,-,n> +s (ﬂ ’H,-,n)] < Z S('H,‘,n)c"s‘?"/“?_
i=1 i=1 i=1
In general, for two family of sets A and B, we have
s(ANB,n) < s(A,n)s(B,n),

which make this condition difficult to satisfy in terms of the general upper bound. In practice, s(AN B,n) could be
much smaller.

The applicability of Theorem 2 depends on the choice of &£’s. We now consider two illustrative examples.
Example 3. Consider that C is a d-rectangle, ie. C = ﬁ [l;, hi] for I; < hy, Ui, h; € R (Fig. 3(a)). Then H; can
bé a set of d-rectangles, and thus V3, < 2d.! Since N-foijlintcrscction of d-rectangle is also a d-rectangle, the VC
dimension of []y] ‘H; is upper bounded by 2d. Let R be set of all d-rectangles, and hence Vz = 2d. Now we can choose
E={C1 o é;l C,,C; € R}, i = 1,2,...,N, which makes it empirically consistent with any é; ® C. In this case
ﬁ &; consists of unions of at most 2N rectangles as shown in Fig. 3, and thus its VC dimension is upper bounded

=1
by 4Nd. O
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Figure 4. Hlustration for Example 4.

Example 4. We now consider a more restrictive and two-dimensional version of Example 3, where we stipulate that
¢ CCorCC $; for i = 1,2,...,N. Such classifiers can be easily realized by computing the largest or smallest
rectangles that include all positive examples. In this case the error sets are “rectangular rings” as shown in Fig. 4(a).
As result, the intersection of error sets consists of at most two rectangles as shown in Fig. 4(b) and (c), assuming the
#:’s are all distinct. Thus for this case, we have V3, < 4. The VC dimension of the error sets is no more than 8, and
that of their intersection is also no more than 8. In this case the condition of the Theorem 2 is easily satisfied. O

5. CONCLUSIONS

We presented two methods for fusing classifiers so that the fused system provides better performance guarantees
than the best classifier. Under additional conditions of deterministic classes and consistent error set estimates, we
showed that the fused system provides better guarantees than any subset of the classifiers. There are several avenues
for future research. First, extensions of the second method to more general cases such as probabilistic classes and
regression estimation, will be of interest. Second, the notion of metafusers!? that combine +he fusers is very appealing.
For the first method based on isolation property, metafusers do not offer much more than what is feasible by fusing all
classifiers, i.e. the fused system simply retains the performance of the best classifier. On the other hand, the second
method might provide a performance significantly better than the best classifier, and hence a metafuser might reduce
error below the levels possible by individual fusers. Such reduction is possible only when accurate estimation of error
sets can be carried out efficiently. It would of future interest to investigate the performance trade-offs involved in
such metafuser design.
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