X-ray synchrotron radiation of high (11 KeV) energy and high flux (10{sup 10} photons per square centimeter per second) has been used to measure strains and polycrystallinity in 6-mm thick polycrystalline beryllium compact tension (CT) specimens at and around the crack tip (for fatigue-precracked sample) or at chevron notch point under load or no-load conditions. The authors demonstrated the feasibility strain field mapping as well as determining the polycrystallinity at or near the points of maximum load in beryllium CT specimens. The experimental techniques and results will be discussed.
Publisher Info:
Los Alamos National Lab., NM (United States)
Place of Publication:
New Mexico
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
X-ray synchrotron radiation of high (11 KeV) energy and high flux (10{sup 10} photons per square centimeter per second) has been used to measure strains and polycrystallinity in 6-mm thick polycrystalline beryllium compact tension (CT) specimens at and around the crack tip (for fatigue-precracked sample) or at chevron notch point under load or no-load conditions. The authors demonstrated the feasibility strain field mapping as well as determining the polycrystallinity at or near the points of maximum load in beryllium CT specimens. The experimental techniques and results will be discussed.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Varma, R.; Green, R.; Garcia, M. D.; Satyam, P. V.; Yun, W. B.; Maser, J. et al.Grain tracing and strain determination in a Be compact tension specimen using synchrotron radiation,
article,
April 19, 1999;
New Mexico.
(digital.library.unt.edu/ark:/67531/metadc707588/:
accessed April 22, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.