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Abstract-The paper will show that in order to obtain minimum size neural networks ( ie . ,  
size-optimal) for implementing any Boolean function, the nonlinear activation function of the 
neurons has to be the identity function. We shall shortly present many results dealing with 
the approximation capabiliiies of neural networks, and detail several bounds on the size of 
threshold gate circuits. Based on a constructive solution for Kolmogorov’s superpositions we 
will show that implementing Boolean functions can be done using neurons having an identity 
nonlinear function. It follows that size-optimal solutions can be obtained only using analog 
circuitry. Conclusions, and several comments on the required precision are ending the paper. 
Keywords-neural networks, Kolmogorov’s superimpositions, threshold gate circuits, analog 
circuits, size, precision. 

1 Introduction 

In this paper a network is an acyclic graph having several input nodes, and some 
(at least one) output nodes. If a synaptic weight is associated with each edge, and 
each node computes the weighted sum of its inputs to which a nonlinear activation 
function is then applied (artijicial neuron): f(x) = f (x, ,  . . ., xa) = d ( e:, w, xi + 0) , 
the network is a neural network (NN), with the synaptic weights W,E IR, $ E  IR 
known as the threshold, A being the fan-in, and 0 a non-linear activation function. 
Because the underlying graph is acyclic, the network does not have feedback con- 
nections, and can be layered. That is why such a network is also known as a mul- 
tilayer feedforward ne.ural network, and is commonly characterised by two cost 
functions: its depth (i.e., number of layers), and its size (ix., number of neurons). 

The paper starts by presenting known results dealing with the approximation 
capabilities of NNs, and details several bounds on the size of threshold gate circuits 
(TGCs). Based on a constructive solution for Kolmogorov’s superpositions we will 
show that in order to obtain minimum size NNs (i.e., size-optimal) for implement- 
ing any Boolean function (BF), the nonlinear activation function of the neurons has 
to be the identity function. Hence, size-optimal hardware implementations of dis- 
crete NNs (i.e., implementing BFs) can be obtained only in analog circuitry. Con- 
clusions, and several comments on the required precision are ending the paper. 
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2 Previous Results 

NNs have been experimentally shown to be quite effective in many applications 
(see Applications of Neural Networks , together with Part F: Applications of Neu- 
ral Computation‘ and Part G: Neural Networks in Practice: Case Studies’). This 
success has led researchers to undertake a rigorous analysis of the mathematical 
properties that enable them to perform so well, and has generated two directions 
of research: (i)  to find existencekonstructive proofs for what is now known as the 
“universal approximation problem; ” ( i i )  to find tight bounds on the size needed 
by the approximation problem [or some particular cases). The paper will focus on 
both aspects, for the particular case when the functions to be implemented are BFs. 

1 

2.1 Neural Networks as Universal Approximators (f: IRn+ IR) 

The first line of research on the approximation capabilities of NNs3“ was started 
in 1987 by Hecht-Nielsen7 and Lippmann’ who, together with L ~ C U ~ , ~  were prob- 
ably the first to recognise that the specific format of the form 10.1 1. . 

of Kolmogorov’s superpositions”: 

can be interpreted as a NN with one hidden layer. This gave an existence proof 
of the approximation properties of NNs. The first nonconstructive proof has been 
given the next year by C y b e n k ~ ’ ~ ’ ~ ~  using a continuous activation function and 
was independently presented by Irie and Miyake.15 Thus, the fact that NNs are 
computationally universal-with more or less restrictive conditions-when modifi- 
able connections are allowed, was established. Different enhancements have been 
later presented in the literature 16,17(Chp. 1). 

Funahashi” proved the same result in a more constructive way and also 
refined the use of Kolmogorov’s theorem, giving an approximation result 
for two-hidden-layer NNs; 
Hornik et aL19 showed that the continuity requirement for the output func- 
tion can be partly removed; 
Hornik et d . * O  also proved that a NN can approximate simultaneously a 
function and its derivative; 
Park and Sandberg21’22 used radial basis functions in the hidden layer, and 
gave an ‘almost’ constructive proof; 
H ~ r n i k ~ ~  showed that the continuity requirement can be completely re- 
moved, the activation function having to be ‘bounded and nonconstant’; 
Geva and proved that four-layered NNs with sigmoid activation func- 
tion are universal approximators; 

I 



Kfi rk~vr i~~  has demonstrated &e existence of approximate superposition rep- 
resentations, i.e. y~ and Qq can be approximated with functions of the form 
C a,  (3 (6,  x + c,) , where B is an arbitrary activation sigmoidal function; 
Mhaskar and M i ~ c h e l l i ~ ~ . ~ ~  approach was based on the Fourier series of the 
function, by truncating the infinite sum to a finite set, and rewriting e in 
terms of the activation function (which has to be periodic). 
Koiran2’ presented a new proof on the line of Funahashi’s,’’ but more gen- 
eral in that it allows the use of units with ‘piecewise continuous’ activation 
functions; these include the important case of threshold gates (TGs); 
Leshno et ~ 1 . ~ ~  relaxed the condition for the activation function to ‘locally 
bounded piecewise continuous’ (Le., if and only if the activation function 
is not a polynomial), thus embedding as specirtl cases almost all the activa- 
tion functions that have been previously reported in the literature; 
Hornik3’ added to these results by proving that: ( i )  if the activation function 
is locally Riemann integrable and nonpolynomial, the weights and the 
thresholds can be constrained to arbitrarily small sets; and (i i)  if the acti- 
vation function is locally analytic, a single universal threshold will do; 

0 Funahashi and Nakamura6 showed that the universal approximation theorem 
also holds for trajectories of patterns; 
Sprecher3’ has demonstrated that there are universal hidden layers that are 
independent of the number of input variables n; 
B a r r ~ n ~ ~  described spaces of functions that can be approximated by Jones’ 
algorithm33 using functions computed by single-hidden-layer network of 
TGs; 

All these results-with the partial exception of2’~22’2s,2*932-were obtained “pro- 
vided that suficiently many hidden units are available” (i.e., no claims on the size 
minimality were made). More constructive solutions have been obtained in very 
small depih later?436 but their size grows fast with respect to the number of di- 
mensions n and/or examples m, or with the required precision. Recently, an explicit 
numerical algorithm for superpositions has been detailed. 37-39 

2.2 Bounds on the Size of Threshold Gate Circuits 

The other line of research was to find the smallest size NN which can realise 
an arbitrary function given a set of m vectors (Le., examples) from IRn. Most of 
the results have been obtained for T G s ~ .  Probably the first lower bound on the 
size of a threshoM gate circuit (TGC) for almost all n-ary BFs (i.e., f :  IBn+ IB) 

(3) 

was4’ : 

size 2 2 ( 2  “ / n )  ’2, 

I - while later a very tight upper bound has been proven42 in depth = 4: 



. 

A similar existence lower bound for arbitrary B F s ~ ~  is SZ (2 n / 3 ) ,  while Roychowd- 
hury et aL4 details lower bounds for particular BFs. 

For classification problems (f: IRn+ IBk), one of the first results was that a 
NN of depth=3 and size=m-1 could compute an arbitrary dichotomy t ie. ,  
k =  1). The main improvements have been: 

B a ~ m ~ ~  presented a TGC with one hidden layer having rm/nl neurons ca- 
pable of realising an arbitrary dichotomy on a set of m points in general 
position in IRn; if the points are on the corners of the n-dimensional hyper- 
cube (Le.. f :  IBn+ IB), m - 1 nodes are still needed; 
a slightly tighter bound of only r l  + (m - 2) /nl neurons in the hidden layer 
for realising an arbitrary dichotomy on a set of m points which satisfy a 
more relaxed topological assumption was proven later;% also, the m -  1 
nodes condition was shown to be the least upper bound needed; 
Arai4' showed that m - 1 hidden neurons are necessary for arbitrary separa- 
bility (any mapping between input and output for the case of binary-valued 
units), but improved the bound for the dichotomy problem to m / 3  (without 
any condition on the inputs); 

0 Beiu and De P ~ u w ~ ~  detailed tight existence lower and upper bounds for 
arbitrary BFs: ( d n )  (112 + Mogn) < size < 0.72 ( d n )  ( 1 4  + Mogn) logn; 
they have been obtained by estimating the entropy of the data-set. 

49,50. . Several other existence lower bounds for arbitrary dichotomy are as follows 
0 a depth-2 TGC requires at least m/ (n  log(m/n TGs; 

a depth-3 TGC requires at least 2 (m/logm) TGs in each of the two 

an arbitrarily interconnected TGC without feedback needs (2m / logm) ' '2 

One study51 has tried to unify these two lines of research (Le., to find proofs 
for the universal approximation problem, while also bounding the size) by first 
presenting analytical solutions for the general NN problem in one dimension (hav- 
ing infinite size!), and then giving practical solutions for the onedimensional cases 
(Le., including an upper bound on the size). Extensions to the n-dimensional case 
using three- and four-layers solutions were derived under piecewise constant ap- 
proximations (having constant or variable width partitions), and under piecewise 
linear approximations (using ramps instead of sigmoids). 

hidden layer (if m >in '); 

T G ~  (if m >>n '). 

2.3 Boolean Functions cf:  IBn+ IB) 

The particular case of BFs has been intensively Some results have 
been obtained for particular BFS:~'~ but a size-optimal result for BFs that have 
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exactly m groups of ones in their truth table (equivalently, which are defined on 
the m groups) was detailed by Red 'k i r~ .~~  
Theorems3 The complexity realisation (i.e., number of threshold elements) of Fn3 
is at most 2 (2m) 

All the previous mentioned results are valid for unlimited fan-in TGs. Depart- 
ing from these lines, Home and Hush54 detail a solution for limited fan-in TGCs. 
Theorems4 Arbitrary Boolean functions of the form f { 0, 1 }" + (0,  1 }" can be irn- 
plemented in a neural network of perceptrons restricted to fan-in A = 2 with a node 
cornptexity of 0 { m 2 " / (n + logm)} and requiring 0 (n) layers. 

+ 3. 

3 Analog Implementation of Boolean Functions 

It is known that implementing any BFs using classical Boolean gates (i.e., AND 
and OR gates) requires exponential size circuits. As has been seen from all previous 
results, the known bounds for size are also exponential if TGCs are used for solving 
arbitrary B F s ~ ~ .  It is true that these bounds reveal exponential gaps (thus encour- 
aging research efforts to reduce them), and also suggest that TGCs with more layers 
(depth # small ~ o n s t a n t ~ ~ , ~ ~ )  might have a smaller size. 

A completely different approach is to use Kolmogorov's superpositions theo- 
rem, which shows that there are NNs having only 2n + 1 neurons which can ap- 
proximate any function. Such a solution would clearly be size-optimal. We start 
from37-39, where a constructive solution for the general case was detailed. 
Theorem37 Define the function y~ ; 6-+ 57 such that for each integer ke N. 

where 

and 

for r= 1,2, ..., k. 
Here y 2 2n + 2 is a base, &= [0, 11, 57 is the set of terminating rational num- 

bers dk = i, y - r  defined on k E N digits (0 I i, I y- 1). Also, (iJ = 0 and 
[i,]=O, while f o r  r 2 2 :  (i,)=O when i,=O, 1 ,  ...,y- 2, and ( i r )=l  when 
i ,=y-1,  [i,]=Owheni,=O,l ,..., y-3, and [ i r ]=l  when i r=y-2 ,y- l .  

For BFs, one digit is enough (k = l), which gives y~ (0.iJ = O.i, (or qr (x)  = x), 
and shows that the nonlinearity is the identity function. 



Such a solution builds analog neurons having fan-in A 1 2 n  + 1, for which the 
known weight bounds 52S8-60 (holding for any fun-in A 2 4) are: 

Thus, one would expect‘ to have a precision of between A and A lo A bits per 

(in general) a double exponential precision for w (Eq. 6), and for the weights: 
weight. Unfortunately, the solution for Kolmogorov’s superposition37- 5 requires 

l=1 

For BFs this precision is reduced to (2n + 2) -n, i.e. 2nlogn bits per weight. Analog 
implementations are limited to just several bits of recision:’ this being one of 
the reasons for investigations on required and on algorithms relying 
on limited integer weights. 

An ‘optimal’ solution for implementing BFs should decompose the given func- 
tion in simpler BFs which can be efficiently implemented based on Kolmogorov’s 
superpositions (Le., we have to reduce n to small values). The partial results from 
this first layer of analog building blocks can be combined using again Kolmo- 
gorov’s superpositions. The final implementation is analog, but requires more layers 
(for accommodating the limited precision of present day technologies). 

16 ,670  

4 Conclusions 

Arbitrary BFs can be implemented using: 
classical Boolean gates, but require exponential size; 
TGs, but (again) in exponential size (still, there are exponential gaps be- 
tween classical Boolean solutions and TG ones); 
analog building blocks in linear size (having linear fan-in and polynomial 
precision wefghts and thresholds); the nonlinear activation function is the 
identity function. 

The main conclusion is that size-optimal hardware implementations of BFs can 
be obtained only in analog circuitry. The high precision required by the solution 
based on Kolmogorov’s superpositions can be tackled by decomposing a BFs into 
simpler BFs. 
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