L-shell emission from high-Z solid targets by intense \((10^{19}\text{W/cm}^2)\) irradiation with a 248nm laser

Dept. of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL 60607.
Tnelson@uic.edu

T. S. Luk and S. Cameron
Sandia National Laboratories, Albuquerque, NM 87815.

J. W. Longworth
Illinois Institute of Technology, Chicago IL 60616

A. McPherson
Argonne National Laboratory, Argonne IL, 60439

Abstract: Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4 – 2.8\AA) and Gd(L) (1.7 – 2.1\AA) is produced by ultraviolet (248nm) laser-excited BaF\(_2\) and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection.

© 1999 Optical Society of America
OCIS codes: (300.6560) Spectroscopy, x-ray; (140.7240) UV, XUV, and X-ray lasers.

1. Introduction

Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging [1,2]. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10\(^{18}\text{W/cm}^2\)) irradiation, with the most promising results coming from the irradiation of Xe clusters with a W (248nm) laser at intensities of 10\(^{18}\) – 10\(^{19}\text{W/cm}^2\) [3,4]. In this paper we report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF\(_2\) and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction [5].

2. Experiment

The laser system used in the experiments is a Ti:Sapphire/KrF* hybrid system. The system produces pulses with an average energy of 400mJ and temporal duration of 230fs. The beam is focused with an f/2 parabolic optic for a resultant focal intensity of 10\(^{19}\text{W/cm}^2\). The spectra were recorded using a mica-crystal von H\(\ddot{a}\)mos spectrograph in 3rd order. The targets used were a BaF\(_2\) optical flat, and a 100 \(\mu\)m thick Gd foil.

Figure 1 shows the recorded Ba(L) spectrum. As can be seen from the figure, the double-peaked structure characteristic to the 3d\(\rightarrow\)2p transition is present, with charge states ranging from 29+ up to 38+. In addition, the Ba spectrum displays the prominent characteristic solid state transitions \(L_{\omega}, L_{\pi}\) and \(L_{\rho}\) from weakly ionized (0 – 10+) Ba atoms. Figure 2(a) shows a similar spectrum recorded for Gd(L).
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Fig. 1. Ba(L) spectrum, produced by intense irradiation (10^{19} W/cm^2) of a BaF\textsubscript{2} target. The peak has a charge state of 38+ as labeled on the plot.

Fig. 2 (a) Gd(L) Hollow atom spectrum + characteristic line spectra. The peak has a charge state of 40+ as labeled on the plot. (b) Gd(L) characteristic line spectra only.

To illustrate the efficiency of the x-ray yield, a calibrated diamond photoconductive semiconductor device (PCD) was used with the BaF\textsubscript{2} target. A signal from this detector is shown in Figure 3. The signal shown in the figure corresponds to a total energy of \sim 4.9mJ, assuming a uniform 2p distribution. Since the total laser energy on target was 400mJ, this translates into a conversion efficiency of 1.2\%!
Fig. 3. Diamond PCD signal of the L-shell radiation from BaF$_2$. The trace shows a rise time of ~150ps for the detector. The calibration of 160μA/W corresponds to an energy of ~4.9mJ of energy, assuming a 2π radiation distribution.

3. Theory

The shell selective collisional ionization theory, as outlined in reference [5], predicts that for L-shell emission, the 2p vacancies are generated by collisions with photoionized 4p electrons. According to current above threshold ionization (ATI) theory, a laser intensity of 1.4×10^{19}W/cm2 is required to ionize the entire 4p subshell in Gd. The two Gd spectra (Fig. 2) were taken with laser intensities differing by a factor of 1.6. The lower intensity failed to produce the ionized plasma spectrum, while the upper intensity yielded the desired result. This data then provides a means of estimating the peak laser intensity, in this case producing a value of $1.4 - 2.3 \times 10^{19}$W/cm2.

4. Acknowledgements

Support for this research at the University of Illinois at Chicago was provided under contract from Sandia National Laboratory and the United States Department of Energy (DE-AC04-94AL85000//BB9131). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under contract DE-AC04-94AL85000. A. McPherson is supported by the United States Department of Energy, Office of Science, under contract #W-31-109-ENG-38.

5. References