Calculating solvation forces and adsorption in complex geometries with a finite element-nonlocal density functional theory method

PDF Version Also Available for Download.

Description

Density functional theories (DFT) for inhomogeneous fluids have been used profitably to study the structure of fluids near surfaces, and to predict solvation forces, adsorption isotherm, and a variety of surface induced phase transitions. However, in nearly all cases, only geometries with 2 symmetry planes (e.g. fluid near a uniform planar interface or a fluid in a uniform cylindrical pore) have been considered. In this paper the authors discuss the generalization of the DFT to cases with either one or no symmetry planes. They present their computational approach, as well as results for charged cylindrical polyelectrolytes and planar surfaces with ... continued below

Physical Description

10 p.

Creation Information

Douglas Frink, L.J. & Salinger, A.G. June 14, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Density functional theories (DFT) for inhomogeneous fluids have been used profitably to study the structure of fluids near surfaces, and to predict solvation forces, adsorption isotherm, and a variety of surface induced phase transitions. However, in nearly all cases, only geometries with 2 symmetry planes (e.g. fluid near a uniform planar interface or a fluid in a uniform cylindrical pore) have been considered. In this paper the authors discuss the generalization of the DFT to cases with either one or no symmetry planes. They present their computational approach, as well as results for charged cylindrical polyelectrolytes and planar surfaces with inhomogeneous chemistry.

Physical Description

10 p.

Notes

OSTI as DE98004671

Source

  • Innovative materials in advanced energy technologies, Florence (Italy), 14-19 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98004671
  • Report No.: SAND--98-0901C
  • Report No.: CONF-980604--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 653965
  • Archival Resource Key: ark:/67531/metadc707422

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 14, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 5, 2016, 7:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Douglas Frink, L.J. & Salinger, A.G. Calculating solvation forces and adsorption in complex geometries with a finite element-nonlocal density functional theory method, article, June 14, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc707422/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.