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Abstract 

The original intention for this work was to impart the technology that was developed 

in the field of “computational aeronautics” to the field of computational physical oceanography. 

This technology transfer involved grid generation techniques and solution procedures to solve 

the governing equations over the grids thus generated. Specifically, boundary fitting non-ortho- 

gonal grids would be generated over a sphere taking into account the topography of the ocean 

floor and the topography of the continents. The solution methodology to be employed involved 

the application of an upwind, finite volume discretization procedure that uses higher order nu- 

merical fluxes at the cell faces to discretize the governing equations and an implicit Newton re- 

laxation technique to solve the discretized equations. This report summarizes the efforts put 

forth during the past three years to achieve these goals and indicates the future direction of this 

work as it is still an ongoing effort. 
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Introduction 

Two of the widely used methods for predicting ocean flows are the a-coordinate approach 

and the z-coordinates approach. The basis for the existing technology is at least a decade old 

in the case of the a-coordinates and more than three decades in the case of the z-coordinates. 

With the then available computer resources in mind, various simplifying assumptions were 

made based on physical judgements andor intuitive reasonings and a simplified set of equa- 

tions were solved to predict the ocean flows. Aptly, this approach is called the Ocean modeling 

approach. While advances have been made over the years in terms of improving the solution 

methodology, using parallel computers for example, the basic physical premises have re- 

mained unaltered. However, there are questions about the validity of these premises when they 

are applied to situations other than those for which they were originally intended. For exam- 

ple, the use of the hydrostatic equation for coordinates other than spherical or Cartesian is not 

well justified. In other cases, equations which do not strictly confirm to the assumptions of 

shallow water theory are routinely being used to compute flows under the name of shallow 

water theory and they are used in situations for which shallow water theory does not apply. 

In computational physical oceanography, the full Navier-Stokes equations are solved thus 

avoiding the many pitfalls of trying to model ocean flows. Application of the Navier-Stokes 
/ 

equations offer several advantages: (1) The equations can be written in conservative form and 

in cases where that is not possible such as when including the effects of buoyancy etc., the 

number of source terms can be kept to a minimum, (2) since the Navier-Stokes equations are 

tensor invariant, numerical methods can be generated in a general setting. These methods ap- 

pear to be much more stable and robust compared to the methods developed for the approxi- 

mate equations (example, viscous-inviscid interactions) and have a wider range of applicabili- 

ty, (3) expressing the Navier-Stokes equations in general curvilinear coordinates allows one to 

solve problems involving complicated geometries with accurate representation of geometries 

1 



as well as offers the flexibility of packing grid lines in regions of interest and sparsely distrib- 

uting them in regions with smaller gradients, (4) specification of boundary conditions on cur- 

vilinear coordinate surfaces is straight forward. The main disadvantages are that it might take 

more computer memory and longer CPU time to solve the problem. With modem compuers 

these disadvantages are less stringent today compared to the past decade and it is aticipat& 

that the situation in the next decade will be much better, particularly with parallel processing. 

In addition, techniques such as the multigrid method have been developed that are useful in 

* 

r: 

1; 

accelerating the convergence of a Navier-Stokes solver for both steady and unsteady flows. 

From another point of view, even though flow in a compressor or turbine of a turbomachine 

is entirely different from atmospheric and oceanic flows, it also falls in the category of flows 

in a rotating frame and typically involves Reynolds numbers of the order of lo5 to lo9. It is 

becoming increasingly common to use Navier-Stokes equations to solve the flow field in a 

turbomachine, even at the design stage, even though various models with various simplifying 

assumptions were in widespread use about a decade earlier. If one were to follow this path and 

uses the viscosity of water as the reference value in computing the Reynolds number for plan- 

etary scale ocean flows, the Reynolds number turns out to be of the order of In order to 

resolve the boundary layer properly at such a high Reynolds number one needs to have a few 

grid points in the viscous sublayer and that implies a grid resolution of the order of millime- 

ters. While such a flow is obviously difficult to compute, it is not impossible. An example 

calculation is presented later. 

The present work is not concerned with ocean modeling per se. Rather, the objective is to 

use concepts from the field of “computational aeronautics” where appropriate and apply them 

to the field of ocean flow simulatiodpredictions. An additional objective is to extend and 

develop new tools dealing with the appropriate equations as well as numerical methods need- 

ed to solve the equations. Consequently, the present work is referred to herein as computation- 
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al physical oceanogmphy (CPO) as opposed to ocean modeling. In the next section the state of 

the art in ocean modeling is reviewed which is followed by a discussion of the present ap- 

proach, computational physical oceanography, in Section 3. 

I 

3 



* 

;- 

2. Review of Ocean Modeling 
4 

Historically, the first coordinate system that was used for computing ocean flows is the so 

called z-coordinates. In this coordinate system, in bas’in level models, for example, an f-plane 

or p-plane approximation is made for the Coriolis force and the equations are expressed in 

local Cartesian coordinates, with the x-direction increasing positive along the East direction, 

y-direction increasing positive along the North direction and the z-direction increasing posi- 

tive in the vertical direction (opposite to the local gravity vector). The important property of 2 

this coordinate system is that it is orthogonal. To be more precise, it should be noted that the 

vertical z is truly orthogonal to the horizontal directions x and y. For global level models the 

spherical polar coordinates are used with the latitude 8, longitude h and the vertical 

z = r - a where, r is the radial distance of the point under consideration and ’a’ is the radius 

of earth, as the coordinates. It can again be noted that the vertical coordinate is truly orthogo- 

nal to the planes containing the horizontal coordinates which are spherical surfaces with 

constant radii. It is well documented in the literature that the topography of the ocean floor, 

which is highly irregular, plays a crucial role in determining the ocean cumnts. The difficulty 

in using the z-coordinate system, for solving the ocean flow problem, is that the ocean floor 

can not be represented by a single coordinate surface. This led to the so called stair case repre- 

sentation of the ocean floor which introduces considerable error in representing the bottom 

topography. In addition, the shape of the continents is not preserved properly because again a 

stair case representation is used. The staircase representation results in a grid in which the 

number of points along different grid lines of the same family is different. In addition, selec- 

tively packing the grid lines near regions of interest is very difficult, if not impossible. Diffi- 

,%. 

culties in the specification of boundary conditions as well as in coding make this approach 

unattractive. Thus, the simplicity of the equations are almost lost in the complexity of coding 

them over such a grid. 
9 
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The best exampIe of a z-coordinate model is the Bryan-Cox-Semtner model first 

introduced by Bryan [l] and later coded by Cox [2]. A finite difference formulation suitable 

for vector processors can be found in Semtner [3]. In this model, the free surface is approxi- 

mated by the rigid lid assumption by which it is meant that the free surface is not allowed to 

evolve in time. As satellite altimetry data is becoming increasingly available, the sea surface 

height is becoming a reliable dataset that can be used to compare with models. So, many mod- 

els now include some sort of approximations to predict the free surface evolution. Killworth et 

al[4], for example, have incorporated the free surface capability in the Bryan-Cox model. 

Sigma coordinates were introduced by Blumberg and Mellor 151 in order to alleviate the 

stair-case problem in the vertical. Thus, in this system the region from the free surface to the 

bottom, in other words the vertical coordinate z is mapped to the coordinate G in the interval 

[-1,0] with the bottom at -1 and the free surface at 0. In this coordinate system some authors 

have preferred to vertically integrate the equations while others have retained the equations 

after applying all the appropriate approximations. It needs to be noted that even though the 

equation system that is not vertically integrated is called a three dimensional system, it is not 

truly three dimensional in the sense that the vertical momentum equation has been replaced by 

the hydrostatic equation. Thus, the number of equations that are actually solved to update the 

flow variables is reduced by one. Since both the free surface and the bottom topography vary 

in the 8 and h directions, where 8 and h represent latitudes and longitudes respectively, their 

derivatives with respect to 0 and h appear in the 0-momentum and h-momentum equations. 

There is sufficient evidence in the literature that the a-coordinates suffer the same difficulties 

as the previous stair-case approach near steeply varying bottom topography. In the a-coordi- 

nate system "h0ri~0~ta.l" surfaces are nonorthogonal to the vertical coordinate, especially in 

regions having steep bottom andor free surface gradients. Bryan [l], in his now classic paper, 

states that the hydrostatic approximation may be shown to be highly accurate as long as the 

5 



aspect ratio of bottom topography is much less than Unity. However, the aspect ratio of the 

bottom topography is comparable to unity in regions having steep bottom andor free surface 

gradients. Haney [6] examines the accuracy of the “horizontal” pressure gradient over steep 

a 

bottom topography in the o-coordinate system without questioning the hydrostatic equation. 

It must be emphasized that the hydrostatic equation is not a coordinate system independent 

approximation and is strictly valid only for a spherical coordinate system or a Cartesian coor- 

dinate system in which one of the coordinate lines is aligned in the direction (opposite to that) 

of the gravity vector and the planes containing the other two coordinates are orthogonal to this 

direction. A natural approach to see whether the hydrostatic equation is valid for the o-coor- 

dinate system would be to write down the complete vertical momentum equation in the o- 

coordinate system and then introduce the order of magnitude approximation along the lines of 

Pedlosky [7]. When this approach is taken, it appears that the hydrostatic equation seems to be 

invalid for the o-coordinate system in regions with steep bottom andor free surface gradients. 

This issue is further discussed in Section 4.6. 

d 

Q 

f 

* 
An interesting approach with the vertically integrated equations in the o-coordinates was 

taken by Borthwick and Kaar [8], in which they introduce curvilinear coordinates in the hori- 

zontal after integrating the equations in the vertical. This approach allows one to conform to 

the boundaries better and allows greater flexibility in spacing the grid lines as well as allows 

one to use the same number of grid points on all the grid lines representing agarticular coordi- 

nate. While the application of this approach is not straight forward in the case of the “three 

dimensional” a-coordinates, the important message of this work is the use of the curvilinear 

coordinate system in the horizontal to represent the side boundaries. Simple test cases where 

such accurate representation of the side boundaries are needed are presented by them. It must 

be noted here that when one uses a nonorthogonal curvilinear grid in the “horizontal” with the 

a 
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woordinates in the "vertical", one is actually using a general nonorthogonal coordinate SYS- 

tem, similar to the one used in this work. 

There is growing doubts within the ocean modeling community about the validity of the 

approximations made in deriving the shallow water equations. Especially, the approximation 

under more scrutiny is the hydrostatic approximation. The vertical component of velocity, 

however small it may be, is needed in order to transport mass ( both water and salt ) as well 

heat in the vertical direction. In the field of Aerospace Engineering, even though the classical 

boundary layer theory treated the component of velocity normal to a viscous surface as being 

small, it still had to take that velocity component into account. Even in Ekman theory, in the 

field of Ocean Engineering, the Ekman pumping is obtained by not neglecting the vertical 

component of velocity. So the obvious inference is that the normal component of velocity 

from a viscous surface in a complicated three dimensional flow has to be accounted for, how- 

ever small it may be. 

Experience with boundary layers have again suggested that the best way to include the ef- 

fects of the normal component of the velocity is to integrate the complete set of Navier-Stokes 

equations with highly packed grid points near the viscous wall rather than trying to make 

approximations to the governing equations and solving them as a viscous-inviscid interaction 

problems. The advent of very powerful computers makes it possible to integrate the Navier- 

Stokes equations over very complicated geometries involving a variety of length and time 

scales. So, it is opined that such applications of the Navier-Stokes equations are possible for 

the planetary scale ocean problems as well. 

3 
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3. Computational Physical Oceanography - Present Approach c 
Grid generation and solution methodology over nonorthogonal curvilinear grids constitute 

the two basic elements of the present approach. Grid generation is a fairly mature area and 

0~ 
standard packages are available for generating grids, and talented and experienced grid gener- 

ators can produce good grids over complicated geometries. The earliest work in grid genera- 

tion using elliptic equations was done by Wmlow [9]. Algebraic grid generation techniques, 

and elliptic grid generation techniques, further developed by Thompson et al [lo], Thompson 

[Ill, and Warsi [12] among others, are the most common grid generatio@techniques used 

today. Further details about these and related topics may be obtained from the book by 

Thompson, Warsi and Mastin [13]. One of the more widely used grid generation packages is 

the EAGLEView [14] which was developed in-house at the ERC. This package provides a 

user friendly graphics interface to the original EAGLE code developed by Thompson and co- 

workers [HI. 

c 

Even though standard packages are available for the purpose of generating grids, consider- 

able user interaction is needed for generating usable grids, mainly for the purpose of defining 

the bounding surfaces, or in other words, for the purpose of geometric definition. For the pur- 

pose of generating ocean grids, points were read from the ETOPOS dataset along the coastal 

lines of the continents with prescribed resolution. Then cubic splines arebused to generate 

cr 

smooth curves that represent the continents. Points along these curves are'hterconnected by 

cross lines and a surface grid is generated and projected onto the ETOPOS  datas set. This sur- 

face grid represents the ocean bottom surface. Once this surface grid is obtained it is projected 

radially outwards onto a sphere of radius one to generate the ocean free surface. Once these 

surfaces are generated all the intermediate surfaces are generated with a chosen point distribu- 

tion in the radial direction. Thus, a volume grid is obtained by joining all the'surface grids in 

the radial direction. 

e 

3 - . -  
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While the process of generating nonorthogonal curvilinear grids for the oceans was fairIy 

straight forward, the process of obtaining numerical solutions over those grids evoked a series 

of fundamental questions: (1) What form of the governing equations is to be used, (2) What 

level of approximations is to be introduced in those equations, (3) What amount of grid reso- 

lution is appropriate for resolving the turbulent flows if one were to choose the viscosity of 

water as the reference value, (4) What are the appropdate boundary conditions to be used, etc. 

Thus, in addition to the task of the development of a numerical scheme as originally envi- 

sioned, it was felt that some theoretical work also needed to be carried out to answer some of 

these fundamental questions. In total, there are five new theoretical developments that have 

taken place in the past three years during the course of this research effort. They are listed 

below: 

(1) Since the time of Coriolis, the Coriolis force has always been expressed as a source 

term. Recently, Beddhu, Taylor and Whitfield [16] have shown that using a simple tensor 

identity the Coriolis force can be expressed as the divergence of a tensor, thus, providing a 

fully conservative form of the momentum equation in a rotating frame. This opens up new 

possibilities of building alternate numerical approaches to solving the governing equations in 

a rotating frame. From a numerical point of view, one of the advantages of expressing the 

Coriolis term in a conservative form, in other words, in a divergence form, is that it fits in a 

natural manner in a finite volume scheme. Note that fluxes are evaluated at the cell faces in 

such a scheme whereas source terms need to be evaluated at the cell centers. A more important 

advantage is that in a higher order numerical approximation of the fluxes the Coriolis term 

naturally enters the flux Jacobian matrix, as can be seen from Section 5.2, and a higher order 

representation for the Coriolis term is thus possible. 

(2) In order to a m u n t  for fiee surface flows in a rotating frame the usual approach adopted 

in the literature is to introduw% time dependent coordinate transformation in the classical mo- 
. -  
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mentum equation €or the rotating frame. Beddhu [ 171 took the approach of transforming the 

momentum equation directly from the inertial to the rotating and deforming frame, and, then 

resolving the resulting vector momentum equation with respect to a set of basis vectors fixed 

in the rotating frame. This approach also leads to the same momentum equation reported by 

others. This aspect is further discussed in Section 4.2. 

(3) The classical momentum equation as presented in the introductory chapters of books 

dealing with flows in a rotating frame, Greenspan [18] and PedlosQ [7] , for example, assume 

that the coefficient of viscosity is a constant. Thus, the contribution of rotation to the viscous 

term in the momentum equation is not included in this formulation. However, when the coeffi- 

cient of viscosity is a variable in space as in turbulent flows or even in laminar compressible 

flows with thermal gradients, Beddhu [17] showed that an extra term appears in the momen- 

tum equation that includes the contribution of rotation to the viscous term. This work is moti- 

vated by the observation that Stokes used the absolute velocity vector in his classical formula- 

I. 

tion of the Stokes tensor, which accounts for the pressure and viscous forces. 

(4) When including the effects of buoyancy in the momentum equation the usual approach 

is to invoke Boussinesq’s approximation in which the density appearing in all the terms of the 

momentum equation is treated as a constant except for the buoyancy term. Alternate fomula- 

tion to Boussinesq’s hypothesis are beginning to be examined by ocean modelers for various 

reasons. In this connection, Beddhu et al [19] have introduced an alternate IT-. formulation in 

which the momentum equation is first divided by density throughout. This results in an equa- 

‘ .  
- 5  - 
P . .  . 

tion in which the pressure term and the viscous term are multiplied by l/p. Then l / p  is re- 

placed by (l/po)(l + @)-’ where p’ = Ap/po, po is a reference density and Ap is the 

change in density from the reference value. This approach leads to an approximation from 

which Boussinesq’s approximation can be recovered as a lower order case. In oceanographic 

applications, which are the-main thrust area of this research, the maximum change in density is 

. .?? 

a 
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about 6 percent of the standard value, see Bryan and Cox [20]. Assuming that the maximum 

change in density is about 10 percent and writing p as p = po + Ap = po( 1 + p' ) it can 

be easily checked that the error involved in writing l /p  ( 1 - p' )/pop where higher order 

powers in p' are neglected, is less than 1 percent. 

(5) Since the coordinate system employed in the present study is a nonorthogonal curvilin- 

ear coordinate system, the viscous stress boundary condition at the ocean surface has to be 

applied with respect to such a coordinate system. However, the viscous free surface boundary 

conditions are a complicated set of equations in a general curvilinear coordinate system. On 

the other hand, in an orthonormal coordinate system, these equations take the simplest form. 

This fact is taken advantage of by introducing a local orthonormal coordinate system at every 

grid point on the free surface in Beddhu and Whitfield [21]. The unit tangent vector ( say, t ) 
to one of the coordinate lines lying on the free surface at the point of interest, the local unit 

normal ( say, ~ r )  to the free surface at the point of interest and the vector 1 x g constitute the 

orthonormal system. Velocity components and the derivatives in this orthonormal system are 

expressed in terns of the velocity components and the derivatives in the curvilinear coordinate 

system using transformation relations which results in a set of matrix equations that are solved 

to update the free surface veIocity components as well as pressure. 

As discussed in detail in Beddhu, Taylor and Whitfield [la, the momentum equation for 

flows in a rotating frame can be formulated in various ways. It can either be formulated with 

respect to an observer who is stationary in an inertial frame or with respect to an observer who 

is stationary with respect to the rotating W e .  It can either be formulated with the absolute 

velocity components or the relative velocity components. Irrespective of which form one 

chooses, the governing equations need to be written in terms of a general curvilinear coordi- 

nates and finally expressed in the so . /  called numerical vector form in order to be discretized. 

For the implicit scheme, one needs the flux Jacobians and the eigensystem of the flux Jaco- . -  

11 



bians. In Beddhu et al[19] the observer was positioned in the inertial frame and the governing 

equations were written using the absolute velocity components. The eigensystem for the com- 

plete system of six equations viz., the continuity equation, the three momentum equations, the 

temperature equation and the salinity equation, was presented. However, one has to subtract 

the term Q x ( Q x g ), as discussed in [ 161, from the momentum equation presented in [ 191 in 

order to make it applicable to ocean flows. Since the term Q x ( x g ) does not depend on 

any flow variable, it does not alter the eigensystem. In Beddhu, Taylor and Whifield [ 161 two 

formulations of the momentum equation were presented with respect to an observer in the ro- 

tating frame, one using the absolute velocity vector in the local time derivative term and the 

other using the relative velocity vector in the local time derivative term where the local time 

derivative itself is formulated with respect to the rotating frame. The eigensystem for the set 

of four equations including the continuity equation and the three momentum equations was 

presented for both the formulations. 

As can be seen from the above discussion, considerable theoretical progress has been made 

to answer some of the questions raised earlier. In terms of code development, three different 

categories of codes are being developed for various applications. They are as follows: (1) A 

set of codes for solving the continuity equation and the three momentum equations. This set is 

the basic set and is called the 4x4 set corresponding to the dimension of the flux Jacobians. (2) 

The second set includes the temperature equation in addition to the continuity and momentum 

equations and is called the 5x5 set (3) The complete set of six equations is included in the 

third set and is called the 6x6 set. In each set of codes various formulations are included which 

,.- 

.<,- 

are determined by the position of the observer and the velocity components used, i.e., relative 

or absolute. Depending on the particular application in hand, a particular code can be chosen 

that will result in minimal memory usage and CPU usage. This approach is needed since the 

problems of interest to the authors are very large scale problems. However, within each set, 
- -  
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since the eigensysgms are remarkably similar for the various formulations, minimal code 

changes are required to go from one formulation to another. Most of the theoretical develop- 

ments introduced earlier are already incorporated in the codes and the remaining are being 

implemented. Among the features that are yet to be implemented is the free surface formula- 

tion in the rotating frame as the theory is very recently developed. The generic name for the 

codes developed in the CFD Lab of the ERC is UNCLE ( UNsteady Computation of fieM 

Equations ). The particular name for the codes developed for Ocean applications is UNCLE.0- 

MAS ( UNsteady Computation of fieLd Equations - Old Man And the Sea ). 

The original incompressible UNCLE code was developed by Taylor [22] as part of his doc- 

toral degree requirement and belongs to the 4x4 category. In this work the observer is posi- 

tioned in the inertial frame and he is observing the flow taking place in a general non-inertial 

frame. This allows the governing equations to be expressed in the so called strong conserva- 

tive form. The artificial compressibility formulation is used to recast the continuity equation 

as a hyperbolic equation and the entire set of governing equations is expressed in terms of 

general curvilinear coordinates fixed in the non-inertial frame. The so called partial trans- 

formation is used to write the momentum equation in its component form in order to maintain 

its strong conservative nature in the component form as well. The resulting governing equa- 

tions are discretized using the Roe scheme [23] for the first order fluxes and the MUSCL 

scheme of van Leer [24] for the higher order fluxes in a finite volume formulation. The discre- 

tized equations are'thensolved implicitly using Newton's method coupled with symmetric 

Gauss-Seidel passings in a time accurate manner where the flux Jacobians are calculated us- 

ing numerical differentiation ( see Whitfield 1251 ). T i e  accuracy is introduced by multiply- 

ing the residual in the Newton's method with a suitable preconditioning matrix as prescribed 

by Pan and chakravarthy [2q. The resulting numerical algorithm is called theDNR ( Discre- 

tized Newton Relaxation ) scheme. Further details of this scheme can be found in Whitfield 
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and Taylor [27]. A detailed exposition of this scheme applicable to two dimensional flows can 

be found in Whitfield and Taylor [28]. 

One of the common methods of reducing the problem size when dealing with large scale 

computational problems is the domain decomposition technique in which a given large physi- 

cal domain is decomposed into smaller sub-domains and the solution algorithm is applied in 

each sub-domain as if it is the only domain of interest. These sub-domains are also called 

blocks. This approach creates artificial block to block boundaries and information needs to be 

passed across these boundaries at each time step to correctly solve the globalproblem. General 

multiblock capability to the original UNCLE solver was added by Arabsh@ and is reported 
li. 

in Arabshahi, Taylor and Whitfield 1291. In this approach, blocks of arbitrary sizes can be ori- 

ented in any arbitrary manner and an arbitrary number of boundary patches can be used on the 

block boundaries for specifying various boundary conditions. Even though an arbitrary orien- 

tation is allowed, grid lines across the block to block boundaries have to be continuous. 

An important technique that has gained widespread popularity for accelerating the conver- 

gence of Navier-Stokes solvers is the multigrid method. A nonlinear multigrid method has 

been added to the original UNCLE solver by Sheng E301 and Sheng, Taylor and Whitfield [3 11 

for steady flows and by Sheng, Taylor and Whitfield [32] for unsteady flows. This approach 

uses the Galerkin coarse grid approximation for .restricting the fine grid matrix operator to the 

coarse grid and applies the implicit correction smoothing technique when prolonging the 

corrections from the coarse grid to the fine grid. Beddhu et d [33] have added the combined 

capability of multiblock and unsteady multigrid approaches to the original UNCLE code de- 

veloped by Taylor [22] with some modification to the coding of Arabshahi [29] and Sheng et 

" L  

. . d; 

al [32]. For various other applications Arabshahi [34] and Nichols [35] have independently 

added the same capability to the original UNCLE code. 
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The strong conservative form of the governing equations in a rotating frame under the 4x4 

category has been formulated in two different manners with the absolute velocity components 

and the relative velocity components respectively, and both have been coded by Beddhu and 

reported in Beddhu, Taylor and Whitfield [la. The governing equations of the 5x5 category 

have been coded using a simple multiblock strategy by Song [3q following the approach of 

Beddhu et al [ 191. These equations are cast with respect to an observer in the inertial frame 

and uses the absolute velocity components. Simple multiblock strategy means that the blocks 

need to be of the same size, arbitrary orientation of individual blocks is not allowed, and, the 

boundary conditions are applied in a restricted manner. Starting from the original UNCLE 

code of Taylor 1223, Beddhu wrote the code for the governing equations of the 6x6 category 

positioning the observer in the inertial frame and utilizing the absolute velocity components 

and this work has been reported in Beddhu et al[19]. This code uses the general multiblock 

strategy. Efforts are underway to include the multigrid capability in this code. A rotating 

frame fomulation of this category has also been coded and is currently being used to compute 

the flow in the Atlantic ocean. 

As mentioned earlier the implementation of the free surface capability in a rotating frame is 

underway using the equations proposed in [17]. However, Beddhu, Taylor and Whittleld [37] 

have introduced the modified artificial compressibility method for solving the free surface 

flows in an inertial frame using deforming grids. This method is capable of predicting un- 

steady free surface flows as demonstrated in [37] and [38]. 

Various strands of the UNCLE code have been successfully tested against various cases 

ranging from text book examples to real world engineering applications and are too numerous 

to list here individually. The basic methodology has proved to be sound and the code is robust. 

Interested readers can refer to the references cited above for applications. However, a set of 

specific cases were designed to demonstrate the capability of the UNCLE solver towards the 
_ _  
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goal of applying a Navier-Stokes solver for computing oceanographic flows. These are dis- 

cussed in the results section. 

The rest of this report is organized as follows: In Section 4 the governing equations are 

presented. In Section 5, the numerical algorithm is presented. Section 6 deals with the grid 

generation strategy employed,for generating ocean grids. In Section 7, the results of chosen 

test cases are presented which clearly demonstrate the capabilities of the UNCLJ3 solver. Fi- 

nally, in Section 8, conclusions are drawn and a possible course of future work is suggested as 
_I this is an ongoing effort. i. 

e 
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4. Governing Equations 

This section is further sub-divided into five subsections. In Section 4.1 strong conservative 

formulation of the momentum equation for geophysical applications is presented which is fol- 

lowed by a discussion on the formulation of the momentum equation for free surface flows in 

the presence of rotation in Section 4.2. In Section 4.3, the derivation of the contribution of 

rotation to the viscous term in the momentum equation is presented. In Section 4.4, the com- 

plete set of the governing equations for oceanographic applications is presented with the pro- 

posed modified Boussinesq’s approximation. In Section 4.5, the formulation of the viscous 

stress boundary condition is presented for a general curvilinear coordinate system as outlined 

earlier. The validity of the hydrostatic approximation in a general curvilinear coordinate sys- 

tem is examined in Section 4.6. 

4.1. Strong Conservative Formulation of the Momentum Equation in a Rotating 
Frame. 

The momentum equations governing the ( oceanic ) flows over earth, which is a self-rotat- 

ing gravitational body, in non-dimensional tensor invariant form is given by ( see for exam- 

ple, Gill 1391 ) 

(4.1.1) 

where 2 = v*/U,, is the non-dimensional velocity vector with respect to the rotating frame, 

z = tU,/L, is &e non-ciimensionaI time, p = (p* - po)/po~t ,  is the nonilimensional pres- 

sure, Q. is the angular velocity of the rotating frame, 6, is the Stokes tensor and h, is the body 

force. Re, is the Reynolds number, Re, = poU& / po, where, po is a reference density, U, 

is a reference velocity, L is a reference length, and, vo is a reference coefficient of viscosity. A 
9 
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tilde over a quantity denotes that it is a tensor and an underscore denotes that it is a vector. The 

Stokes tensor is given by 

a = p ( v ~ + v T ~ )  (4.1.2) 

where, p = p*/po, is the non-dimensional coefficient of Viscosity. The superscript 'T' in q. 
(4.1.2) denotes the transpose operation. The only body force considered is that due to gravity 

and is given by = nJFr2, where, Fr is the Froude number given by Fr = U,/ @, where, a 

is the acceleration due to gravity and g is the local normal to the earth's surface. In Eq. (4.1.1), 

- denotes local time derivative with respect to the rotating frame. & other words if & 

& ; m = 1, 2, 3 are the Cartesian base vectors in the rotating frame then, by definition, 

A 

a 

It can be easily verified that 

(4.1.3) 

(4.1.4) 

where, 

identity for any two vectors and h, ( see, Morse and Feshbach [40] ) 

is the radius vector from the origin of the rotating frame. Using the following tensor 

v &bJ = 3 ' (Vb) + b(V ' a)  (4.1.5) 

and the fact that V * = 0, which follows from the conservation of mass& is seen that 

a x y  = - v (vw) (4.1.6) - 

where, = - - SZ x g. Therefore, Eq. (4.1.1) can be written as 
A e + v *  [ x ( v  - 2 ~ ) + p f ~ - - - - 6 l = 0  1 
I3.r Reo 

(4.1.7) 

Note that the body force has been combined with the pressure by the use of the body force 

potential in the manner preschbed by Beddhu et al[37], that is, p' = p + x/Fr2, where x is 
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the body force potential due to gravity. Equation (4.1.7) is the strong conservative formulation 

of the Navier-Stokes equation for incompressible flows in a rotating frame. To the authors’ 

best knowledge this is the first time the NavierStokes equations have been presented in a 

rotating frame without both source terms. Note that, such a formulation is not possible for 

compressible flows since V y f 0. The continuity equation in the modified artificial com- 

pressibility method [37] is given by 

- + g v *  y = o  (4.1.8) 

where 6 is the artificial compressibility parameter. 

Even though Eqs. (4.1.8) and (4.1.7) form a complete set of govemhg equations for solv- 

ing the oceanic flow problems, further insight into the alternative formulations of the momen- 

tum equation appropriate for solving geophysical flow problems, can be gaihed by looking at 

an alternate derivation, starting from the governing equations with respect to an arbitrary non- 

inertial frame. The momentum equation for viscous, incompressible flows in a non-inertial 

frame of reference, in a gravitational field, in non-dimensional, vector invariant form is given 

by (see, for example, Warsi [41]) 

(4.1.9) 

where &is the Jacobian of the coordinate trmformation, g = g*/U, is the non-dimensional 

velocity vector in the absolute frame, y = p + JX is the non-dimensional velocity vector relative 

to the moving frame, 941 is the non-dimensional grid speed vector, and other quantities are as 

defined previously. The Stokes tensor is given by 

(4.1.10) 

It must be noted here that Warsi [41] follows the linear transformation representation ( see, 

Truesdell and Noll[42] ) for representing tensors whereas this work has adopted the dyadic 
3 

19 



product representation ( see, Morse and Feshbach [40] ) for representing tensors. Hence, the 

equations found in Ref. [41] are suitably modified to fit the representation adopted in this 

work. 

Since a rotating frame is a particular case of non-inertial frames for which Eq. (4.1.9) is 

applicable, it must be possible- to derive the momentum equation in a rotating frame from Eq. 

(4.1.9). However, the concept of grid speed is not valid with respect to an observer situated in 

the rotating frame since the grid does not move with respect to himher. Following Warsi [41], 

instead of considering E as the grid speed, one poses the question of what.form of in Eq. 

(4.1.9) would result in the Navier-Stokes equations in a rotating frame. It is an exercise prob- 

lem in Ref. [41] to show that substituting = - - 52 x 1, where, Q is the angular velocity of 

the rotating frame and f is the distance from the origin of the rotating frame in Eq. (4.1.9), 

results in the classical rotating frame equation in a gravitational field, i.e., the centrifugal force 

term Q x (Q x ) has to be added to the left hand side of Eq. (4.1.1). Hence, in order to arrive 

at Eq. (4.1.1) this term has to be subtracted from Eq. (4.1.9) to obtain 
c 

(4.1.11) 

It is emphasized that now Eq. (4.1.11) is applicable only to self-gravitating, rotating bodies 

like the earth. The vector momentum equation, Eq. (4.1.11), can be resolved into components 

with respect to a set of basis vectors which can either be fixed in the inertial frame or in the 

non-inertial frame. This aspect is further discussed in Section 4.2. The basikvectors are fixed 

in the rotating frame for the following discussion. Thus, for the case of a rotating frame with a 

constant angular velocity Q using the relations given in Section 3.10B of Ref. [41], it can be 

Q 

proved easily that 

(4.1.12) 

. -  
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$ where, - denotes local time derivative with respect to the rotating frame (See Eq. (4.1.3)). 

Equation (4.1.11) can now be re-written, using 4. (4.1.12), as follows: 

dt’ 

- + v -  ;iU [ ~ ~ + p ’ l - - - 5 ] + Q x ~ = o  1 
ih fie0 

(4.1.13) 

where, y = g + E = - Q x g is the velocity with respect to the rotating frame. Note that the 

body force has been combined with the pressure by the use of the body force potential as be- 

fore. Substitution of Eq. (4.1.6) in Eq. (4.1.13) results in, 
A 2 + v *  [I(& - w ) + p ’ I - - 6 1 = 0  - 1  
ih Re0 

(4.1.14) 

Equation (4.1.14) is an alternate strong conservative form of the Navier-Stokes equations in a 

rotating frame, applicable for a self-gravitating, rotating body like the earth. Note that Eq. 

(4.1.7) can be recovered from Eq. (4.1.14) by substituting, g = Y - H! = 1 + Q x g. The main 

difference between Eqs. (4.1.7) and (4.1.14) is that in a time marching approach, one would 

solve for the relative velocity components using Eq. (4.1.7), whereas one would solve for the 

absolute velocity components using E!q. (4.1.14). The continuity equation in the modified arti- 

ficial compressibility method [37] is given by 

(4.1.15) 

where f3 is the artificial compressibility parameter. 

The fully conservative formulation of the momentum equation is given in the compact vec- 

tor and tensor notations, thus far. However, in order to solve the equations, numerically or 

othe-, one has to write the momentum equation in its component forms. When resolving 

the momentum equation into component forms one is presented with many choices. These 

choices arise due to the fact &at the vector and tensor quantities can be expressed with respect 

to any set of coordinates independent of the coordinates one chooses to express the diveFgence 
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operator itself. Traditionally, however, the set of coordinates chosen for resolving the vector 

and tensor quantities is the same as the one chosen for expressing the divergence operator. 

Thus, Cartesian velocity components are chosen when the divergence operator is expressed in 

Cartesian coordinates, cylindrical components are chosen when the divergence operator is ex- 

pressed with respect to cylindrical coordinates and so on. The problem, for example, with 

choosing cylindrical components of the vector and tensor quantities when expressing the di- 

vergence operator in cylindrical coordinates is that Christoffel symbols appear explicitly, 

thereby preventing the conservative formulation in the component form. Therefore, if one 

wants to come up with a conservative formulation in the component form also then there is 

only one choice. That, is to express the vector and tensor quantities in Cartesian components, 

no matter what coordinates are chosen to express the divergence operator. Since, nonorthogo- 

nal curvilinear coordinates are the most general coordinates, the divergence operator is ex- 

pressed with respect to such a coordinate system in this report. The resulting equations are 

given in Section 5.1 ( see also Section 4.6). The code UNCLELOMAS ( UNsteady Computa- 

tion of fieLd Equations - Old Man And the Sea ) is written to solve Eqs. (5.1.1). Thus, sup- 

pose one is interested in the flow over a sphere. Then one can construct a grid based on spheri- 

cal coordinates and the appropriate metrics will automatically be computed. However, the real 

advantage of this approach is that one does not have to create a grid based on spherical coordi- 

nates. As long as the body shape is maintained spherical, any set of coordinate lines can be 

created, analytically or numerically, and the same code can be used to solve the flow field. 

<. 

Even though Eq. (4.1.9) ( after expressing the body force in terms of the body force poten- 

tial ) and Eq. (4.1.14) are in fully conservative form and a time marching scheme in both cases 

would solve for the absolute velocity components, the important difference between them is 

the position of the observer. While in the case of Eq. (4.1.9) the observer is situated in the 

inertial frame, hehhe is simated in the rotating frame in the case of Eq. (4.1.14). Thus, the grid 
. _  
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remains stationary in the case of Eq. (4.1.14) whereas the grid has to be moved and all the 

metrics need to be recomputed at each time step in the case of Eq. (4.1.9). Steady flows in the 

rotating frame can be computed using time inaccurate schemes using Eq. (4.1.14) whereas 

they require time accurate computation of Eq. (4.1.9). 

A time marching upwind scheme for the set of equations (4.1.14) and (4.1.15) would typi- 

cally solve for the pressure and the Cartesian components of the absolute velocity vector. Ei- 

ther one can solve the set of equations (4.1.14) and (4.1.15), or, the set (4.1.7) and (4.1.8), by 

the numerical method presented later in this report. For both sets remarkably similar sets of 

eigensystems are derived. These eigensystems again differ from that derived by Taylor [22] 

for Eq. (4.1.9) only slightly which results in minimum code modifications. 

The solution procedure for the set of equations (4.1.14) and (4.1.15) is called Absolute-Ve- 

locity Procedure and that for the set of equations (4.1.7) and (4.1.8) is called Relative-Veloc- 

ity Procedure. An important element in the present formulation is the construction of the in- 

viscid fluxes at the cell interfaces. The theory behind the construction of the inviscid fluxes 

has been well established by Roe [23], van Leer [24] and others. The tools needed for 

constructing the inviscid fluxes are provided in Section 5.2. 

The strong conservative form of the momentum equation in a rotating frame for non-geo- 

physical applications, turbomachinery problems for example, is presented in Beddhu, Taylor 

and Whitfield [ 161. 

I 

4.2. The momentum equation for incompressible f ree  surface flows in the pres- 

ence of rotation. 

Actual ocean flows involve a dynamically evolving free surface. The effect of a free surface 

has been neglected altogether in early studies of the ocean flows. However, in recent times 

free surface computations are included at least for numerical reasons, if not for physical rea- 
D 
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sons. It should be emphasized that proper inclusion of a free surface in a rotating frame com- 

plicates the governing equations further by bringing in the effects of deformation in addition 

to rotation. Besides, one has to deal with the non-linearity of the free surface kinematic equa- 

tion in addition to the non-linearity of the Navier-Stokes equations themselves. In this sec- 

tion, a consistent formulation, of the governing equations is presented when a dynamically 

evolving free surface is present in a rotating frame. 

In order to compare the end result of this section with the classical form of the momentum 

equation in a rotating kame, the approach taken in this section is to formulate the momentum 

equation in a non-conservative form. First, the momentum equation applicable for a general 

arbitrary non-inertial frame is derived starting from first principles. This equation is then re- 

cast in terms of the relative velocity vector, and the grid velocity vector, and the local time 

derivative is expressed in terms of the relative frame. The relative velocity vector that appears 

in the resulting equation is described with respect to the rotating and deforming frame and the 

grid velocity vector includes both the rotational and deformation contributions. In order to 

cast the governing equations in a familiar form, appropriate variables are introduced. At the 

end of the section a strong conservative formulation of the momentum equation is presented. 

The non-dimensional, non-conservative form of the momentum equation with respect to 

an inertial frame is given by 

7 - >  (4.2.1) 

where the symbols are defined in the previous section. The deviatoric part of the Stokes ten- 

sor, 5, is given in Eq. (4.1.10). 

Now, let xI,xz and x3 be a set of Cartesian coordinates attached to the inertial frame and 

consider an arbitrary time dependent coordinate transformation, 

t l  

f l  

i 

Q 

a 

B 
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(4.2.2) 

where xi are a set of general curvilinear coordinates attached to the non-inertial frame. It is 

assumed that the inverse of the transformation in EQ. (4.2.2) exists. In order to transform Eq. 

(4.2.1) to the non-inertial frame, first the local time derivative in Eq. (4.2.1) which is obtained 

by keeping xi, i=1,2,3, fixed, needs to be expressed in terms of the time derivative obtained 

keeping xi, i=1,2,3, fixed. This results in, 

(4.2.3) 

axi 
at -19 at where, the vector is given by, w = a. where, -is the contravariant components of 

the grid velocity vector, and, 3, are the covariant base vectors of the curvilinear coordinate 

system. Substituting Eq. (4.2.3) in Eq. (4.2.1), one gets 

2 + y v g  = - V p + - V .  1 6 + b  
dz Re0 (4.2.4) 

where the local time derivative is evaluated by keeping xi fixed, and, 3 is the relative velocity 

as observed fiom the non-inertial frame given by 

(4.2.5) 

Note that the sum in Eq. (4.2.5) is a vector sum and should not be misconstrued to mean that 

the relative velocity is greater than absolute velocity. It is emphasized here that the trans- 

formation implied in Eq. (4.2.2) has nothing to do with choosing a set of base vectors to re- 

solve Eq. (4.2.4) into components. Without specifying the frame (which will be done shortly) 

let , m = 1,2,3, be a set of base vectors. Then the local time derivative in Eq. (4.2.4) can be 

written as: 
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(4.2.6) 

where, urn, m = 1,2,3,  are the contravariant components of the absolute velocity vector with 

respect to the base vectors a-. The first term on the right hand side of Eq. (4.2.6) represents 
d the local time derivative with respect to the non-inertial frame and the second term on the c 

right accounts for the rate of change of the base vectors with respect to time. It can be easily 

checked that if the base vectors are fixed in an inertial frame then ea-/& = 0. Similarly, for 

the base vectors fixed in the rotating frame one has 

(4.2.7) 

Finally, for the base vectors fixed in a rotating and deforming frame one has (See Warsi [41], 

Eq. 3.134) 

(4.2.8) 

Resolving Eq. (4.2.4) with respect to the base vectors fixed in the rotating frame means that 

one should use Eqs. (4.2.6) and (4.2.7) in Eq. (4.2.4) which results in 
A 

(4.2.9) 

A hat is placed over the local time derivative in Eq. (4.2.9) to indicate that it is evaluated with 

respect to the relative frame ( see Eq. (4.1.3) for the definition ). Equation' (4.2.9) is the mo- 

mentum equation for a rotating and deforming frame expressed in terms o€ the base vectors 

fixed in a rotating frame alone. In other words, an observer situated in the rotating frame 
* - r  

would use Eq. (4.2.9) to predict the flow in a deforming coordinate system. (Note that an ob- 

, server situated in the rotating frame can only see deformation). In order to cast Eq. (4.2.9) in a 

familiar form one proceeds as follows. For a rotating and deforming frame the vector can be 

decomposed into a vector sum of two components, one due to rotation and the other due to 

deformation. Let, = + E', where, = - ( 2 x ), is the part due to rotation .apd E' 

- -  

e 

Q 

t 

t 
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is the part due to deformation which has to be obtained numerically or otherwise at each in- 

stant in time. Then Eq. (4.2.5) becomes 

- V = 2 + = + + E’ = y + E’ (4.2.10) 

where, by definition, 1 = g - ( Q x I-) is the relative velocity with respect to the rotating 

frame. Substituting Eq. (4.2.10) in Eq. (4.2.9) and writing the resulting equation in terms of II: 
results in 

Equation (4.2.11) is the final form of the momentum equation goveming a flow in a rotat- 

ing and deforming frame cast with respect to an observer in the rotating frame and expressed 

in terms of the relative velocity vector with respect to the rotating frame. 

In the traditional approach to deriving the momentum equation in terms of the rotating and 

deforming coordinates one first transforms to the rotating frame alone from the inertial frame. 

Thus, the transformation implied in Eq. (4.2.2) is from the inertial to the rotating frame alone 

and Fq. (4.2.4) becomes 

(4.2.12) 

The difference between Eqs. (4.2.12) and (4.2.9) is in the third term on the left hand side. In 

Eq. (4.2.9) the relative velocity is with respect to the rotating and deforming frame whereas in 

Eq. (4.2.12) the relative velocity is with respect to the rotating frame alone. Now, let 

xI,x2 and x3 be a set of Cartesian coordinates attached to the rofatingfiame and consider an 

arbitrary time dependent coordinate transfornation of the type ghen in m. (4.2.2) to account 

for deformation. The time derivative in Eq. (4.2.12) has to be replaced using Eq. (4.2.3) which 

results in 
a _ -  
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(4.2.13) 

where, E' is the deformation velocity vector. It can be seen that Eq. (4.2.13) and Eq. (4.2.9) 

are the same. Thus the traditional approach and the present formulation yield the same mo- 

mentum equation. 

Using the continuity equation and the geometric conservation law [45] in Eq. (4.2.11) yet 

another form of the momentum equation can be obtained as follows: 
--t 

A -  

*. 

(4.2.14) 

Next, for the sake of completeness, the momentum equation with respect to an observer 

situated in the rotating and deforming frame is derived. Substituting Eqs. (4.2.6) and (4.2.8) in 

Eq. (4.2.4), one obtains 
A 

1 -- all u * v v J + y v g  = - V p + - V .  i i + k  
a z -  Re0 

Replacing in terms of 1 and E, using Eq. (4.2.5), results in 
A A 

Q 

(4.2.15) 

clt 

(4.2.16) 

Equation (4.2.16) is the final form of the momentum equation governing 6 incompressible 

flow in an arbitrary non-inertial frame, expressed in terms of the relative velocity, and is valid 

for an observer situated in the arbitrary non-inertial frame. 

Substituting Eq. (4.2.10) in Eq. (4.2.16), and splitting as mentioned above, one obtains 
a 
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A 'is2 2x + 1 * V I  + x g  + 2 2 x 1  + Q x  ( Q x g  ) + w' V I  az 
1 - v VW' - ( Q x g )  ' VW' =. - Vp + -V 6 + b (4.2.17) 

Re0 - 

Notice that two additional terms appear on the left had side of Eq. (4.2.17) when compared 

with the left hand side of Eq. (4.2.11). 

In Eqs. (4.2.11) and (4.2.17) the centrifugal force term, Q x ( Q x g ), appears explicitly. 

Thus, these equations are valid for flows in a rotating frame in an external gravity field, turbo- 

machinery flows for example. For the case of bodies such as the earth which are self-rotating 

and self-gravitating, the centrifugal force is implicitly accounted for in the definition of accel- 

eration due to gravity. Hence, for geophysical applications the centrifugal force needs to be 

deleted from Eqs. (4.2.11) and (4.2.17) which leads to the following two equations respective- 

l Y  
A 

1 a + v * v v  + 2 Q x Y  + $ * v y  = - v p + - v *  5 + b  Re0 - a z -  (4.2.18) 

1 - V V &  - ( Q x ~ )  VW' = - V p  +-V 6 + b (4.2.19) 
Reo . 

Note that in EQs. (4.2.18) and (4.2.19) 2 is assumed to be independent of time as well. 

Following the procedure outlined in the Section 4.1, it is possible to cast the momentum 

equation for flows in a rotating and deforming frame in a strong conservative formulation. 

However, this formulation needs to be in terms of the absolute velocity vector appearing in the 

local time derivative. Thus, for an observer situated in the rotating frame one can obtain from 

EQ. (4.2.9) 3 
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(4.2.20) 

and for an observer situated in the rotating and deforming frame one can obtain from Eq. 

(4.2.15) 

(4.2.21) 

where, &is d e  Jacobian of the coordinate transformation from the inertial frame to the non- 

inertial frame introduced in Eq. (4.2.2). The difference between Eqs. (4.2.20) and (4.2.21) is 

in the second term within the divergence term. 

4.3. Effect of rotation on flows with a spatially varying viscosity field. 

The discussion in this section is valid for both geophysical and non-geophysical flows. For 

non-geophysical flows one needs to add the centrifugal force term explicitly to the left hand 

side of Eq. (4.1.1). From a historical perspective, the classical momentum equation, Eq. 

(4.1. l), in a rotating frame was first written to be applicable for laminar flows. Thus, the coef- 

ficient of viscosity was treated as a constant and the viscous stress tensor was assumed to be 

given by Eq. (4.1.2). On the other hand, according to Stokes hypothesis, whether the frame is 

inertial or non-inertial (rotating frame, for example) the viscous stress tensor is given only by 

Eq. (4.1.10). However, when the coefficient of viscosity is a constant, the divergence of the 

viscous stress tensor as given by Eq. (4.1.2) turns out to be the same as given by Eq. (4.1.10). 

Since, only the divergence of the stress tensor appears in the momentum equation and the di- 

vergence of ms. (4.1.2) and (4.1.10) is the same, text books have been written stating that the 

viscous stress tensor in a rotating frame is given by Eq. (4.1.2). However, it is stressed here 

that even for a laminar flow in a rotating frame the viscous stress tensor is still given by Eq. 

(4.1.10). This understanding is essential for properly accounting for turbulence in a ro-tating 

-. \ = -  

i 

(t 

s 
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frame. Since only the divergence of Eq. (4.1.10) enters the momentum equation one can, how- 

ever, compute the stress tensor using Eq. (4.1.2) for laminar flows. 

When the understanding that many practical flows are turbulent in nature developed, at- 

tempts were made to cast the momentum equation in a rotating frame valid for turbulent 

flows. In all these attempts the standard Reynolds averaging procedure was introduced in Eq. 

(4.1.1). This led to a turbulent stress tensor which is modeled using Eq. (4.1.2) albeit with a 

spatially varying Viscosity field. However, the correct approach is to use Eq. (4.1.10) for mod- 

eling the Reynolds stress tensor. Alternately, one can first introduce the Reynolds averaging 

procedure in the momentum equation for an inertial frame in which there is no ambiguity 

about modeling the Reynolds stress tensor and then transform the resulting equation to a rotat- 

ing frame ( or a rotating and deforming frame ) as outlined in this report. Thus, one would 

again have the Reynolds stress tensor modeled by Eq. (4.1.10). When this approach is 

adopted, it is shown in the following that rotation has an effect on the viscous term as well. 

The velocity vector with respect to the absolute frame, E, can be written as, using Eq. (4.2.5) 

(4.3.1) 

Hence, the Stokes tensor, 8, given by Eq. (4.1. IO) becomes 

6 = p [ V ( y - l v ) + V T ( ~ - ~ ) ]  (4.3.2) 

For the purpose of &e following discussion, 6 is decomposed into two parts, 6’ and a’’, as 
follows: 

6‘ = p [ v v + v T y ]  1 
J 5’’ = - p[ vw + V’W] 

Thus, the viscous term in 4. (4.2.17) is given by 

v *  a =  v *  q +  V b ”  

(4.3.3) 

(4.3.4) 
_ -  
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b I 

c 

It can easily be shown that when the ( non-dimensional ) coefficient of viscosity p is constant, 

then V * 5" = 0. Thus, in the introductory chapters of [7] or [18], for example, the viscous 

term V * 6 in the classical momentum equation for a rotating frame, E$. (4.2.14) with 

- w' = 0, is replaced by V 8, assuming the coefficient of viscosity p to be a constant. How- 

ever, when p is not a constant i t  is inappropriate to replace V * 5 by V * 5' in Eq. (4.2.14) or 

in Eq. (4.2.17), since V 5" # 0. In fact, 

f 

a. 

v 6" = 2 Q x V p  (4.3.5) 

Thus, when one is dealing with fluid flows in a rotating frame which result in a spatially vary- 

ing viscosity field, such as turbulent flows, one can not neglect the term given by Eq. (4.3.5) 

without justification. Note that this term arises due to rotation and is not influenced by de- 

formation, Since the formulation in Eq. (4.1.10) is valid for compressible flows, so is Eq. 

(4.3.5). Laminar compressible flows in a rotating frame, with or without free surfaces, with 

strong thermal gradients are other applications for which the viscous term formulation is ap- 

propriate. 

4.4. Governing equations of the ocean flows with the modified Boussinesq's 

approxi mati on. 

Q 

I 

In this section the complete set of governing equations for thermohaline ocean flows are 

given with respect to an observer at rest in an inertial frame. However, the observer is observ- 

ing the flow taking place in a rotating frame. The momentum equation is cast using the abso- 

lute velocity vector and the local time derivative is expressed with respect to the absolute 

frame. Note that by appropriate choice of the vector one can either consider a rotating frame .e 0 

alone ( = ) or a rotating and deforming frame ( = E + ). These symbols are 

defined in Section 4.1. To obtain the modified Boussinesq's approximation, the momentum 
0 

equation is first divided by density throughout. This results in an equation in which the-pres- I .& 
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sure term and the.viscous term are multiplied by l/p. Then l/p is replaced by 

(l/po)(l + p‘) -1 where p’ = Ap/po, po is a reference density and Ap is the change in den- 

sity from the reference value. In oceanographic applications, which are the main thrust area of 

this research, the maximum change in density is about 6 percent of the standard value, see 

Bryan and Cox [20]. Assuming that the maximum change in density is about 10 percent and 

writing p as p = po + Ap = po( 1 + p‘ ) it can be easily checked that the error involved in 

writing l/p 0 ( 1 - p’ )/po, where higher order powers in p‘ are neglected, is less than 1 

percent. The resulting governing equations are 

Continuity 

v . g = o  
Momentum 

(4.4.1) 

x 1 p‘ [ - V (-f) + V (p’f)  - -V 31 (4.4.2) 
Fr2 Re0 

Temperature 

. .. 

. .  Salinity I. I, 

(4.4.3) 

(4.4.4) 

where T = T*/To is the non-dimensional temperature and S = S*/S, is the non-dimen- 

sional salinity. To and S o  are the reference values of temperature and salinity respectively. 

The new non-dimensional parameters are Prandtl number, Pr = pocp/~T,  Peclet number, 

Pe = Re& and the Schmidt number as = K~/U,L where xT is the coefficient of thermal 
7 
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conductivity and xS is the coefficient of saline diffusivity. All other symbols are defined in the 

previous sections. The last two terms on the right hand side of Eq. (4.4.2) are the proposed 

modification to the Boussinesq’s approximation. Note that computation of these terms do not 

involve any extra overhead since all the tern need to be computed anyway for the left hand 

side. Terms involving p’ are not included in the temperature and salinity equations since these 

terms are assumed to be of the same order of magnitude as the other terms that have been 

neglected from these equations. An important difference between the present set of equations 
s 

and the set obtained using Boussinesq’s approximation E431 is in the treatment of the momen- 

tum equations. Boussinesq’s approximation proceeds by assuming the density to be constant 

in every term in the original momentum equation except the body force term, whereas no such 

assumption is made in obtaining Eq (4.4.2). 

4.5. Viscous free surface boundary conditions in general curvilinear coordi- 

nates. 

The dynamic boundary condition at an interface is that the stress vector be continuous 

across the interface neglecting the effects of surface tension. These conditions were first 

introduced by Hirt and Shannon [MI. These conditions are important when a wind shear is 

imposed on the free surface. As mentioned earlier, the coordinate system used in this work is 

a general curvilinear coordinate system in which one of the coordinate surfaces always coin- 
- 

cides with the evolving free surface. The viscous free surface boundary conditions become 

quite complicated under these circumstances and it is not quite obvious how to solve them. It 

is the objective of this section to present a useful form of the viscous free surface boundary 

conditions in such a general setting and to deduce systematically from them a set of diagonally 

dominant matrix equations that are easy to solve. 
., - 

The dimensional viscous boundary condition at the free surface is given by 
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- *  * 
- n . T  = Z O  (4.5.1) 

= - p* 8 + p* ( V < + VT$ ) is the dimensional Stokes tensor, 2 is the local 
* 

+where, 

normal to the free surface and z: is the dimensional applied wind (shear) stress vector. Non- 

dimensionalizing the other variables an in Section 4.1 and as % = - Lz' , Eq. (4.5.1) be- 
pouo 

comes 

30 
Re0 Reo + pon g . [ - p i + - ( V g  I.L + V T g ) ]  =- 

(4.5.2) 

Now, introduce a Cartesian coordinate system si,,?r, and X3 locally, with unit vectors 

Ql, &, i3) and velocity components (UI, ii2, E3). Since Eq. (4.5.2) is a vector equation, resolv- 

ing it into three components in the above coordinate system, taking l2 = a,  yields 

- -  

(4.5.3) 

The conbuity equatm in this system becomes 

(4.5.4) 

(4.5.5) 

(4.5.6) 

Note that such a local Cartesian coordinate can be introduced in the following manner. Let 

and & = il xi2, where, gl is the covariant base vector and a' is the - a a2 - - - I  - -  , 1 2 - -  

contravariant base vector grad 7 for the given cudinear coordinate system. Here it is assumed 

ar 
ar A1 kill p i  

%t 

that the free surface is represented by a q = constant suxface. It is quite easy to express the 
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various partial derivatives and the velocity components in Eqs. (4.5.3) - (4.5.6) in terms of the 

quantities in the given (or global) Cartesian and curvilinear systems. Using the relationships be- 

tween the derivatives in the Cartesian and curvilinear coordinates Eq. (4.5.3) becomes 

(4.5.7) 

where R, contains the terms involving uE, us, vE, vs, ws and ws , f i n  = a,, a= + a2, a l k  

- 
and a, = im . i,. Similarly, Eqs. (4.5.4) and (4.5.6) are written as 

a_ . 

E& = 0 - aul 
axk 

: (4.5.8) 

(4.5.9) 

where yk = 0 3 1  a3k + a31 a2klUld E& = a11 CXlk + a21 + a31 a3k &UatiOIlS (4.5.8) and 

(4.5.9) can also be cast in the same form as Eq. (4.5.7) and can be obtained from Eq. (4.5.7) by 

replacing f3 by y and E respectively. Equation (4.5.7) along with the two equations obtained from 

Eqs. (4.5.8) and (4.5.9) are solved simultaneously for u,,, v,,, and wv The velocity components 

at the free surface are obtained from these derivatives and their values in the cell just below the 

free surface. Then, pressure is updated using Eq. (4.5.4). 

4.6. Validity of the hydrostatic equation in general curvilinear'coordinates. 

It was noted in Section 2 that when one uses either a Cartesian or a spherical coordinate 

system, the vertical direction is orthogonal to the horizontal directions. Thus, among the con- 

travariant components of the metric tensor that involve the z-direction (the vertical direc- 

tion), only the gzz component is non-zero and the other two components involving the z-di- 

rection, viz. gxz and gYz (or gez and gl' ), are zero. The same holds true for the covariant 

components also. For theie coordinate systems, using the assumptions that (1) the vertical 

Q 
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length scale is very much smaller than the horizontal length scales, and (2) the vertical veloc- 

ity component is very much smaller than the horizontal velocity components, in the complete 

vertical momentum equation leads to the hydrostatic equation in a straightforward manner ( 

see Pedlosky [7], for example ). It was also mentioned in Section 2 that when one uses a non- 

orthogonal curvilinear grid in the "horizontal" and the CFcoordinates in the "vertical", one is 

actually using a general nonorthogonal coordinate system, similar to the one used in this work. 

For such a coordinate system, all the cross metric terms are, in general, non-zero. Hence, the 

question whether one can use the hydrostatic equation in such a coordinate system naturally 

arises. The approach taken in the literature is to transform the hydrostatic equation from the 

Cartesian or spherical coordinate system to the general curvilinear coordinate system. Ob- 

viously, this approach does not answer the question raised above. The correct approach one 

should take is that one should start with the complete vertical momentum equation and 

introduce all the assumptions used to obtain the hydrostatic equation in the Cartesian or spher- 

ical coordinate system, and see whether one recovers the hydrostatic equation in the nonortho- 

gonal coordinate system also. It is the purpose of this section to show that when the cross met- 

ric terms involving the vertical direction are non-zero one can not recover the hydrostatic 

equation, in general. In order to cast the governing equations in a form that is available in the 

literature, for the purpose of comparison, it is sufficient to consider only the inviscid part of 

the momentum equation. Equation (4.2.14), with the viscous term neglected reduces to: 

(4.6.1) 

Note that Eq. (4.6.1) is not in a strong conservative form. However, it is in a form appropriate 

for the current discussion. 

Using the so called partial transformation ( see the appendix ) in which the velocity vector 

- V is resolved with respect to the underlying Cartesian coordinates, whereas the divergence 
. -  
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operator itself is expressed with respect to the general curvilinear coordinates ( 5, @ and a in 

the following ), the three components of the momentum equation (4.6.1) are as follows: For 

want of better symbols, the symbols (u, v, w) - without the underscore - are used to denote the 

; (hi w ,  + "[hi [ w (U5X + V E y  + W E z  + E t )  + P'E,]] a% aE 

+ &[ & I w (u@x + v @y + w +z + 4%) + P) az ) ]  
+&[hi [ w ( u a x  + vay  + w a z  + at) + p'a,]] = 0 (4.6.4) 

where, f = 2 I Q I, and it is assumed that the vector Q is aligned in the dhction for conve- 

nience, and subscripts denote partial differentiation. The quantities Et, +t and ot denote the 

contravariant components of the vector E'. Note that E' is the deformation velocity vector 

defined in Section 4.2. 

Now, in order to be specific, the well known a-coordinates are introduced as follows: 

3E 

t 

38 

(4.6.5) 



where, q = q(x, y, t) denotes the free surface and H = H(x, y) denotes the bottom topogra- 

phy. Using Eq. (4.6.5), the various metric quantities that appear in Eqs (4.6.2) - (4.6.4) are 

obtained as follows: 

(4.6.6) 
(4.6.7) 

(4.6.9) 

(4.6.10) 

(4.6.11) 

.. (4.6.12) 

. _  
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where, D = H + q. Note that Eq. (4.6.11) is obtained from the general relations between 

contravariant and covariant base vectors whereas Eq. (4.6.12) is obtained from the explicit 

relationship for (J given in Eq. (4.6.5). From Eqs. (4.6.8), (4.6.11) and (4.6.12) one obtains 

& = za = l/oZ = D 

Again, from the definition of the a-coordinate system, it follows that 
. 

Now, from the Geometric Conservation Law (GCL) 1451, one obtains 

since V W = 0. Using Eq. (4.6.14) in Eq. (4.6.15), it can be verified that 

Therefore, 

6 
(4.6.13) 

I 

(4.6.14) 

(4.6.15) 

(4.6.16) 

The contravariant components of the metric tensor involving the vertical direction are 

gEO = (E) (Va) = gx ax + E y  (Jy + Ez (Jz = ax 

g w  = (V(b) (V(J) = (bx (Jx + @y (Jy + $z (Jz = (Jy 

gou = (VG) (Va) = a; + a; + 0; 

(4.6.17) 

.- 
Substituting the various quantities in Eqs. (4.6.2) - (4.6.4), one obtains 

c 

c 
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A 

a ( D  + &[ D v u ] + ”[ D v2]  + d ( D v o ) + D f u  
dt aY 

+ d[ Dp‘]  - ”[ pf (qy + OD,)] = 0 a Y  aa 

(4.6.18) 

(4.6.19) 

(4.6.20) 

(4.6.2 1) 

Note that, all the corresponding terns that appear in Eqs. (4.6.18) - (4.6.20) agree with the 

derivation of Blumberg and Mellor [q. Equation (4.6.20) is the complete inviscid vertical mo- 

mentum equation. 

z 

Y 

o = constant surface 

Fig. 1. Schematic Diagram of a +surface with Steep Gradient 
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In order to show that one can not recover the hydrostatic equation in a general curvilinear 

coordinate system ( through the example of the cxoordinate system ) it is enough to show 

that in Fq. (4.6.20) there is at least one more term in addition to the pressure term that can not 

be neglected. For this purpose, it is necessary to consider the dimensional form of the equa- 

tions whereas Eqs. (4.6.18) -,(4.6.20) are in non-dimensional form. The dimensional form 

can be shown to be the same equations except that the pressure term is multiplied by I/p. 

Note that, in Eq. (4.6.21), ax, oY and oZ are components of VO. For a (J = constant surface, 

Va/l V a  I denotes the normal to the surface. In regions of steep ( bottom or free surface ) gra- 

dients ox and oy are of the same order or even greater than that of oa depending upon the 

steepness ( see Fig. 1 ). Hence, the contravariant velocity component D o  can be of the same 

order of magnitude as the horizontal velocities u and v. Looking at Eq. (4.6.17), it can be 

readily inferred that this is due to the fact that the cross metrics involving the "vertical" direc- 

tion are non-zero. Under these circumstances the order of magnitude analysis similar to the 

one that can be found in Pedlosky [7] ( page 60 ), for Eq. (4.6.20) yields: 
Q 

(4.6.22) 
a 

D W  
T 
- 

W 
T 
- 

DWU 
L 

D W  
L wu P 

P 
- 

"- 

Or 

An analysis of the horizontal momentum equations, Eqs. (4.6.18) and (4.6.19), still yields the 

same order of magnitude for the pressure as in Pedlosky [7]. That is, 
Q 

P = p u [ k ,  u, f L ]  
max 

(4.6.23) 
Y 



From Fq. (4.6.22), $e ratio of convective terms to the pressure gradient term is given by 

a [  $, 9, f ]  ma 
convective terms - - 

pressure gradient term (4.6.24) 

The ratio in Eq. (4.6.24) is of the order of 6 where 6 = D/L, D is the vertical scale length and 

L is the horizontal scale length. Terms of the order of 6 can not be neglected from the govem- 

ing equations since otherwise one would end up with a strictly two dimensional (in x and y) 

can not be dropped from Eq. (4.6.20). Thus, Eq. equations. Hence, the term 

(4.6.20) simplifies to 

( 6.1 

a 0  

d ( D w o )  dp’ 
a0  d o  + - = O  (4.6.25) 

Note that one can not simphfy Eq. (4.6.25) further since Eq. (4.6.24) contains the ’max’ oper- 

ator. Thus, using the same assumptions that are used to obtain the hydrostatic equation in a 

Cartesian ( or spherical ) coordinate system one can not obtain the hydrostatic equation in a 

general curvilinear coordinate system. On the other hand, suppose u = z in Eq. (4.6.5). Then, 

D = 1, = 0, gYZ = 0 and 6.1 = w, and Eq. (4.6.25) becomes 

~ ( w w )  ap’ 
az az + - = O  (4.6.26) 

It can be easily shown that the first term on the left hand side of Eq. (4.6.26) is of the order of 

a2 which can be dropped. Thus, one obtains the hydrostatic equation in a Cartesian coordinate 

system. So far, the discussion has not included the viscous terms. Including the viscous terms 

and using the same assumptions that led to Eq. (4.6.25) leads one to 

(4.6.27) .. 

where z, and zyz are the shear stresses. Again, it can be seen that one can not obtain the hy- 

drostatic equation in a general coordinate system. It should be mentioned here that the discus- 
Y 
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sion in this Section does not invoke the effects of variable density which are addressed by 

Haney [6] .  

c 
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5. Numerical Procedure 

The governing equations that are presented in tensor invariant form in Section 4 need to be 

expressed in component form in order to be solved numerically or otherwise. As mentioned in 

Section 4.1, in order to maintain the strong conservative nature of the governing equations in 

component form also, one effects the so called partial transformation. An example of this pro- 

cedure was presented in Section 4.6 in which the tensor invariant form presented in Fq. (4.6.1) 

is presented in component form in Eqs. (4.6.2) - (4.6.4) where the divergence operator is writ- 

ten with respect to a general curvilinear coordinate system (see also the appendix). In this sec- 

tion the numerical procedure used to solve the governing equations is described in detail. The 

set of governing equations chosen are those corresponding to the absolute and relative velocity 

procedures discussed in Section 4.1 and the set of equations belonging to Section 4.4 with Eq. 

(4.4.1) replaced by Eq. (4.1.15). The continuity equation in the original artificial compress- 

ibility method proposed by Chorin [46] contained the time derivative of the static pressure 

only. Recently, Beddhu, Taylor and Whitfield [37] have proposed the modified artificial com- 

pressibility method in which the body force potential is also added to the pressure in the conti- 

nuity equation. This is the approach adopted in this work as well. Thus, the governing equa- 

tions are hyperbolic and a time marching approach is adopted to solve them. 

In Section 5.1, the goveming equations are first cast in the so called numerical vector form. 

Then the equations in the numerical vector form are discretized in an implicit manner and then 

linearized which result in the flux Jacobians. In Section 5.2, the eigensystem of the flux Jaco- 

bians are presented. In Section 5.3, an approximate, one dimensional Riemann problem is 

solved at each cell face following the approach of Roe [23] to obtain first order accurate fluxes 

and then the MUSCL scheme of van Leer [24] is used to obtain higher order fluxes (up to tbird 

order). The Newton-relaxation procedure [25] is introduced in Section 5.4 and the numerical 

implementation of the boundary conditions is discussed in Section 5.5. - -  
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5.1. Numerical vector form. 
? 

All the governing equations of Section 4 can be expressed in the following manner after the 

introduction of the partial transformation 

(5.1.1) 

In Eq. (5.1.1) 5, q and 5 denote the curvilinear coordinates, F, G and H denote the inviscid 

fluxes on a E = constant face, q = constant face and = constant face respectively. Sim- 

ilarly, Fv, Gv and Hv denote the viscous fluxes. M is the source term prhich is non-zero only 

for the 6x6 set. The various quantities in Eq. (5.1.1) for the different sets of governing equa- 

tions are presented below. 

Absolute velocity procedure (4x4 set) 

This set consists of Eqs (4.1.14) and (4.1.15) and the various quantities in Eq. (5.1.1) are: 

-PI- 

U 

Q = &  
V 

W - -  

B.' 1 
u'(ul + 53 + P'EX 

v'(ul + E3 + P'5, 
Fv = & 

$ 1  

I 

1 0 

&x + %,Ey + &z 

.. . 

where, u, v and w are the components of the absolute velocity vector with respect to a Carte- 

sian coordinate system and u', v' and w' are the Cartesian components of the vector g - = 
a,, etc., are the Cartesian components of the Stokes tensor, Ex, 5, and Ez are the Cartesian 

components of the contravariant base vector grad 5. Expressions for G and H are similar to F 

and can be obtained from F by replacing 5 by q and crespectively. Similarly Gy and Hv can 

be obtained from Fv. 

c 
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c 

Relative velocity procedure (4x4 set) 

Equations (4.1.7) and (4.1.8) are the governing equations for this set. 

"PI- 

U 

Q = A  
V 

W - -  

Fv = & 

where, u, v and w are the components of the relative velocity vector with respect to a Cartesian 

coordinate system and ut, vr and w1 are the Cartesian components of the vector y - 2 E. Other 

quantities are as in absolute velocity procedure. 

Governing equations of a thermohaline ocean with respect to an observer in the 

absolute frame (6x6 set) 

The governing equations for this set are Eqs. (4.4.1) - (4.4.4). 

P '  
U 

V Q = A w  
T 
S - 
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Fv = & M = p  

'0 

Ml 
M2 

M3 

0 
0 

r 

(5.1.4) 

u1 = u t x  + vEy + W E z  

Note that, the tensor J!V W appearing in Eq. (4.4.2) can also be written as (522R2/2)? where R 

is the normal distance from the axis of rotation to the point under consideration, and can be 

added to the definition of p'. Thus, it does not explicitly appear in Eq.  (5.1.4). The expressions 

for MI, M2 and M3 are involved and are written in compact tensor notation as follows:: 

i = 1, 2, 3 

In the expression for Mi, the summation convention is used over repeated indices. 

Discretization 

In the finite volume approach, the physical domain of interest is divided into a finite num- 

ber of cells and the variables are defined at the centers of these cells. Note that these cells can 

be created in a curvilinear coordinate system in a natural manner using standard grid genera- 

tion packages. A simple one dimensional case is schematically shown in Fig. 2. Cell centers 

designated from 2 through M are the field points and the cell centers 1 and NI+1 of the ficti- 

tious cells (not shown) are the so called phantom points used for prescribing the boundary 

conditions. The governing equations are solved only at the field points. In what follows, the E, 
q and s coordinates are indicated by the symbols i, j and k respectively in the discrete sense. 

Thus, i and i+l represent two consecutive points in the increasing direction of E and so on. 

,+ 
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0 0 0 0 0 0 0 0 0 

1 2 3 ... i-1 + i f i+l ... NI NI+1 

i-112 i+1/2 

0 

Fig. 2. Schematic Showing the Cell Volumes and the Variable Loca- 
tions for a One Dimensional Case 

Denoting the discrete time by the symbol n ( thus, Zn = n AT ), Eq. (5.1.1) is discretized 

about the cell center ( i, j, k ) as follows (refer to Fig. 2): 

H'"': + Mn+l = 0 (5.1.5) 

Note that, in Eq. (5.1.5), A& Aq and As are all taken to be unity and the time derivative is 

approximated using the second order accurate backward Euler formula. Note that the fluxes 

have only one subscript instead of three. This is just a notational simplification and it is under- 

stood that F"+' in fact, denotes F::ij,k and so on. 

n + l  n + l  Fvn+' i+!j - Fvn+? 1-5 + Gvy:+ - GJ-4 + Hvk+i - k-5 

i+$ ' 

Equation (5.1.5) is in the implicit form in which the unknown solution is at time level n+l. 

Direct solution of Eq. (5.1.5) is difficult sinm the inviscid fluxes are non-linear. One method 

of solving Eq. (5.1.5) is to consider it as a system of non-linear algebraic equations in the 

unknowns Q"+* and use Newton's method to find the root of this system. Note that this is an 

iterative procedure. Strictly speaking, the fluxes are functions of the Q variables. However, 

since the metrics are known at time n+l, no linearization needs to be done with respect to 

them. Hence, the fluxes are considered only as functions of the q-variables where q = Q/ &. 
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The process of solving Q. (5.1.5) using Newton's method requires the evaluation of inviscid 

flux Jacobians, E and which is discussed next. 
dq' aq aq 

5.2. Flux Jacobians and their eigensystems. 

Absolute velocity procedure (4x4 set) 

a F ; B = - .  a G ,  c = -  aH and denoting the generic 
aq 84 

Defining the flux Jacobians as A = - 
aq 

flux Jacobian by K, one obtains 

kx 8, + u'k, u'k, u'k, 

ky v'k, 8, + v'k, v'k, K = J i  (5.2.1) 

where 8, = kt + u kx + v k, + w k, and kt = E. gk where gk is the contravariant base 

vector on the k = constant face. When k = 5, K = A, k = q, K = B and k = s , K = C. In 

order to find the eigenvalues of K, the following matrix M and its inverse M-l are used to 
-- form the matrix IC = MKM-~. - ."T' 

M =  

1 0 0  

1 0 

- 0 1 

B 
B 
d o 0  
B ?  

0 

0 

0 

1 

0 

1 

0 

0 

0 0 -  

0 0  

1 0  

1 0 

(I 

f 

6 
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The matrix IC is given by 

0 

0 

0 

0 

0 

0 

(5.2.2) 

The eigenvalues of K and IC are the same since they are similar matrices. However, it is much 

easier to find the eigenvalues of IC rather than that of K, and are found to be 

1 (5.2.3) 

h 4 =  B k - k t - c  J 
where, 

c = J ( e k - k t ) 2 + B ( k g + k ; + k z )  

Following Taylor [22], in order to obtain the left and right eigenvectors of K, first the left and 

right eigenvectors of IC are obtained. They are the columns and rows of the following matrices 

respectively 

Pk = 

.3 @3 @3 1 
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- Zk$- 

- 2C@ 

2E$8 

- 2kG- - 2kg-I 

where 

xl = - 
- giki 

$5 = 2203 - i2$1 

$8 = 21$3 - z"l$l 

wt ek 
$3 = cz + - B 
$6 = &$2 - i2$1 

$9 = 2142 - jl@l 

.. Z l  zl =- Jrn 
I 

8 

(xl, yl ,  zl)  and (x2, y2, 22) are the diagonal vectors on the k = constant face [22]. In this 

section, a tilde over a quantity denotes that the metrics used in computing that quantity are 

normalized with the area of the cell face. The left and right eigenvectors of the flux Jacobians 

K are obtained as follows: T, = M Pk and TC1 = Pi1 M-l where the left eigenvectors are 

given by the rows of TG ', and the right eigenvectors are given by the columns of Tk respec- 

tively. The matrices Tk and TC1 are the following: 

9: 

B 

5 
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(- ~ ' $ 4  + ~ ' $ 5  - ~ ' $ 6 )  28414 - 2E$5 2E$6 
f) 

The quantity TA-T-lGq which is required in the Roe flux formulation [23] is given by 

T A - T - ' ~ ~  = 

where 

r14 R4 

r,R4 - $ (r, R4 + rB R, - Su) 

q r34R4 - q (r, R4 + r33 R, - SV) 

e r,R4 - (r, R4 + r43 R3 - 6w) 

R3 = 131 6p + 1326~ + 13,6v + 13,6w, 

( 131 , ... , 13, ) and ( 141 , ... , 1, ) are the 3rd and 4th left eigenvectors ( that is, 3rd and 4th 

rows of T<' ), and, ( r13 , ... , r43 )Tand ( r14 , ... , r, )Tare the 3rd and 4th right eigenvec- 

R4 = 14, 6p + 1426~ + 1,6v + 1,6w, 
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tors ( that is, 3rd and 4th columns of T, ) . The quantity 6q is given by 6s = qR - qL where 

qR and qL are defined using a MuscL type approach ( [MI, [281). 

A requirement of the theory behind this numerical scheme is that the first order fluxes satis- 

fy the property U defined by Roe [23]. It can be easily verified? by direct substitution, that the 

nents of at cell centers i and i+l taken to be the same as that at the cell face i+1/2, satisfy the 

relation Fi+l - Fi = A($) [Qi+ - Qi] where F is the flux and A is the flux Jacobian. 

Relative velocity procedure (4x4 set) 

The analysis of the absolute velocity procedure carries through and the flux Jacobians as 

well as eigenvectors retain the same form as given by the matrices K, K, T, and TC1 respec- 

tively. The eigenvalues of this system are given by 

where, 
8, = ukx + v k y  + wk, and 

T I  

e 

(5.2.4) 

the same as before. 

Governing equations of a thermohaline ocean with respect to an observer in the 

absolute frame (6x6 set) 

Note that the definition of, e,, is different from that of the absolute velocity procedure. kt is 

The software Mathematica has been used extensively to obtain the eigensystem for this 

case. The generic flux Jacobian is given by 

Q 

Y 
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where 8, = kt + u kx + v ky + w k,. The eigenvalues of K are found to be 

(5.2.5) 

where, 

c - = k J 2 - ~ ;  c + = k J 2 + c m d  

c = ,/@k - kJZ)2 4- p(k$ 4- k; 4- k;). 

A set of normalized right eigenvectors are given by the columns of the following matrix T 

0 0 0 0  - c- - c +  

i l  y"2 0 0 ky + vg/B' ky + v$/p' 

il a 0 0 k, + w$/$' kz + w$/$' 

0 0 1 0 - T@l/c'- - T@~/c '+  

0 .io 0 1 - S@l/c'- - S@2/C'+ 
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where lVkl = ,/k$. + k; + kz, $1 = &(k; + k; + k:) + %(€Ik - kJ/P, 

$2 = &(k$ + k; + k;) + $(ek - kJ/P, f3' = &f3, C f -  = &C-, C f +  = &C+. 

Following Taylor [22], (xl, yl, zl) and (x2, y2,'z2) are the diagonal vectors on the 

k = constant cell face; i l  = xl ,h%i and so on. The corresponding set of left eigenvectors are 

the row vectors of the inverse of T and after considerable algebra are obtained to be 

11 '12 l13 '14 0 
122 123 124 0 

T-1 = - 1 '31 '32 l33 '34 

IVklD 14, l,, 1, 0 

'51 '52 '53 '54 0 
'61 l62 l63 '64 0 I 

0 

0 

0 

IVklD 
0 
0 

where 

12, - - - - 2c[il (k,v - k y w )  + il  (k,w - k,u) + z"l (kyu - kxv)]  B 

1, = - f [ f3 (kZi l  - k y i l )  + Ok(wi1  - v i l ) ]  

i. 

r' 
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C +  

$1 $2 $1 A; $ 2 g  
14, 

C +  
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*- 

In the Roe [23] flux formulation used here to compute the flux at the cell face, one needs the 

quantity TA-T-lAq at the cell face, where A- is the diagonal matrix containing only the 

negative eigenvalues of K. After considerable algebra and using the fact that T T -' = I, it 

can be shown that TA-T-lAq can be written only in terms of the 5th and 6th left and right 

eigenvectors as follows: 

TA-T-lAq = 

5.3. Numerical flux formulation. 

From Q. (5.1.5) and Fig. 2, it can be seen that the fluxes are evaluated at the cell faces 

whereas the dependent variables are stored at cell centers. In order to evaluate the fluxes at the 

cell faces one can use some kind of interpolation technique to obtain the dependent variables 

at the cell faces. Roe [23], on the other hand, treated the problem of obtaining the inviscid flux 

8 
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at a cell face as an approximate Riemann problem. Thus, suppose one is interested in obtain- 

ing the inviscid flux F, at the cell face i+1/2. Roe assumed that the solution at the interface is 

discontinuous and the solution just to the left of the cell.face i+1/2 is given by qi and the solu- 

tion just to the right of the cell face is given by qi+l, thus setting up a Riemann problem. In 

this approach, at any instant only one cell face is assumed to exist and the effect of the adja- 

cent cell faces are ignored. Then, Roe showed that the following equation holds for the flux 

difference across the cell face 

Fi+l - Fi = A(Q (qi+l  - Si 1 (5.3.1) 

provided the flux Jacobian A is evaluated with the Roe average variable T j  where p is a func- 

tion of qi and qi+l. Pan and Chakravarthy [26] have shown that for the form of the incom- 

pressible flow equations used in this study the Roe average turns out to be just the simple 

arithmetic average. Equation (5.3.1) can be used to find the flux at cell center i+l in terms of 

the flux at i. However, one is actually interested in the flux at cell face i+1/2. Roe's approach 

can still be used to find the flux at the cell face i+1/2 and yields the following expression. 

n 
h-0') r0') 

'i+1/2 = [~(qi)Ii+l/, + aj,i+1/2 i+1/2 i+1/2 
j-1 

where, aj,i+l/2 = 19) ( qi+l - qi). A-G) is the j-th negative eigenvalue of the Roe 
1+ 1/2 

(5.3.2) 

matrix A@, r@ is the corresponding right eigenvector of the Roe matrix and, 10') is the corre- 

sponding left eigenvector of the Roe matrix. Note that aj is the corresponding jump in the 

characteristic variable. The subscript i+1/2 on the right hand side of E& (5.3.2) denotes that 

the metrics used in evaluating the various quantities are evaluated at the cell face i+1/2. In l3q. 

(5.3.2) k denotes the numerical flux at the cell face i+1/2 and [F(S~)]~+~,~ denotesthe actual 

flux given by EQ. (5.1.2), ($1.3) or (5.1.4) as the case may be, evaluated using qi and the 

metrics at i+1/2. The formulation in Eq. (5.3.2) is not unique and other equivalent formula- 



tiom can be found in Whitfield, Janus and Simpson [47]. Note that the formulation in Eq. 

(5.3.2) requires the hyperbolicity of the governing equations. Equation (5.3.2) can also be 
? 

written as 

where T and T and A- are defined in the previous section. Note that a clever way of evalu- 

ating the second term on the right hand side of Eq. (5.3.3) is also given in the previous section. 

It can be shown that the formulation in Eqs. (5.3.2) or (5.3.3) is first order accurate in space. ,- 

The reason for this is that the formulation in Eq. (5.3.2) assumes that the solution variables q's 

are constant in each cell. Higher order flux formulas are given in Taylor [22] and Taylor and 

Whitfield [48] that closely follows the formulation of higher order flux formulas for com- 

pressible flows. In a departure from this approach, Whitfield and Taylor [28] observe that the 

flux formulation of the governing equations of incompressible flows do not require limiters 

and adopt the MUSCL scheme of van Leer [24] for higher order flux formulation. Note that in 

deriving J3q. (5.3.2) Roe used qi as the dependent variable to the left of the cell face and qi+l 

as the the dependent variable to the right of the cell face. Instead of this approach, Anderson, 

Thomas and van Leer [49] uses the following formulas for left (denoted by qf+1/2) and right 

(denoted by qf+ 1/2) dependent variables. 

t The higher order flux is obtained from Eq. (5.3.2) or from Eq. (5.3.3) by replacing qi by 

qi+1,2 L and qi+l by qF+l,2. Thus, when Q = 0 in Eq. (5.3.4) one recovers the first order for- 

mulation. So, for higher orders Cp needs to be taken as unity. With K = - lone obtains a sec- 
7 

t* 



ond order accurate scheme in which only values to the left of the cell face ( i.e. qi and qi- ) 

are used to evaluate qk+ 1/2 and only values to the right of the cell face ( Le. qi+ and qi+ ) 

are used to evaluate qr+1/2' With IC = 1/3 one obtains a third order upwind biased scheme 

[49] which uses two points to !&e left and one point to the right of the cell face to obtain 

qk+ and two points to the right and one point to the left of the cell face to obtain qF+ 1/2. 
7 

5.4. Discretized Newton-relaxation scheme. 

It was mentioned in Section 5.1 that the implicit discrete equation (5.1.5) needs to be solved 

in an iterative manner in order to obtain the solution at time level n+l. Equation (5.1.5) is 

considered as a set of non-linear algebraic equations and Newton's method is employed to 

find the root of this system. In operator form Eq. (5.1.5) can be written as 

N(qn+') = 0 (5.4.1) 

where 

(5.4.2) 

In Eq. (5.4.2) the numerical fluxes introduced in Section 5.3 are used for the inviscid fluxes. 

Note that the function N includes the time derivative. Thus, time accuracy is inherently built 

into the scheme. This fact i q  further explained in Whitfield [25]. Newton's method [50] ap- 

plied to Eq. (5.4.1) results in 
. -  

61 



I 

62 

(5.4.3) 

where m = 1,2,3, ... . The iteration is started by taking qn+19 = qn. The generated sequence 

qn+l,m converges to qn+l, in principle. Thus, Eq. (5.4.1) is satisfied as m ---+ 03. 

P 

From Eq. (5.4.3) it can be seen that the Jacobian matrix , hereafter denoted 
qn+l .m 

as N'( qn+ ), is needed in Newton's method. In order to obtain N'( qn+'ym ) one needs to 

differentiate each term on the right hand side of Eq. (5.4.2) with respect to &e solution vector 

qn+l and add all the terms together. In order to differentiate the right hand side of Eq. (5.4.2) 

one needs to know the functional dependence of the various terms on qn+l. Strictly speaking 

the higher order fluxes at the cell faces depend on two points on either side of the cell face. 

However, in order to contain the band width of the resulting matrix the approach taken by 

Whitfield [25] was to evaluate the Jacobian matrix N'( qn+l*m ) assuming that the fluxes in 

Eq. (5.4.2) are given by first order formulae and to obtain the residual on the right hand side in 

Eq. (5.4.3) using higher order fluxes. However, it can be seen from Eq. (5.3.3) that, for the 

MUSCL scheme, the same equation is used to obtain either the first order fluxes or the higher 

order fluxes depending upon what is substituted for the dependent variables (q's). Referring to 

Eq. (5.3.4), Whitfield [25] used 4 = 0 to evaluate the Jacobian matrix N'( qn+lTm ) on the 

left hand side of Eq. (5.4.3) and 4 = 1 to evaluate the residual N( qn+ '* ) on the right hand 

.. 

-: 

.,n+l 
side. Thus, Whitfield [25] considered the flux Fi+1/2 at the cell face i+1/2 to be functions of 

q f f l  and qfz: alone which results in 

9 

i 
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A A 

(5.4.4) n + l , m  n + l , m  
= DFi+ 1/2, i + "Fi+1/2,i+1 Aqi+l 

Note that the left hand side of the first equality in Eq. (5.4.4) does not contain any spatial 

location. Thus, it is in functional form. In Eq. (5.4.4), 

and 

(5.4.5) 

In a similar manner the other flux terms in EQ. (5.4.2) can be differentiated. The evaluation of 

the flux Jacobian, defined in Eq. (5.4.5), is discussed later. The first subscript on the left hand 

side of Eq. (5.4.5) indicates the location where the metrics are evaluated and the second sub- 

script indicates the location of the solution vector. 

Whitfield and Taylor [28], on the other hand, consider the numerical flux to be dependent 

on a d  qF+l/2 thereby using @ = 1 ( see &. (5.3.4) ) for the evaluation of the Jaco- 

bian matrix N'( qn+lSm ). Using this approach one obtains 
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The difference between Eqs. (5.4.4) and (5.4.6) can be seen in the subscripts of the flux Jaco- 

bians. After substituting the various quantities, Eq. (5.4.3) becomes 

A n + l , m  - DFi- 1/2, R - D'j - 1/2, R - D'k- 1/2, R) 'qi 

3 Qn+l,m - 4 Qn + Qn-1 A n  A n  An A n  I, + Fi++ - Fi-L + Gj++ - Gj-' 2 AT 2 2 

(5.4.7) 

The matrix I, = diag(0, 1, 1, 1) multiplying the time derivative on the right hand side of Eq. 

(5.4.7) is a conditioning matrix used to introduce time accuracy into the scheme [26]. Note 

that only the inviscid flux Jacobians are shown in Eq. (5.4.7). In an anahgous manner the 

viscous flux Jacobians can be obtained using the thin layer approximation and added to the left 

hand side of (5.4.7). When this is done it can be seen that for every inviscid term on the left 

hand side of Eq. (5.4.7) there is a corresponding viscous term. The Jacobian of the source term 

can be obtained using the Boussinesq's approximation and when added to the left hand side of 

Eq. (5.4.7) it results in the strengthening of the block diagonal matrix since the source term is 

d 

... 



Analytical derivation of the flux Jacobian matrices, viz. Dsi + 1,2, etc. is not straight for- 

ward. Hence, they are obtained numerically in this work In order to obtain the derivative of 

the m-th element of the vector i?i+lj2 with respect to the n-th element of the vector qf+1,2 

one proceeds as follows: 

(5.4.8) 

where en is the n-th unit vector and 

h = i z  (5.4.9) 

It should be mentioned that the metrics used to evaluate the right hand side of Eq. (5.4.8) are 

evaluated at the cell face i+1/2. In a similar manner all other flux Jacobians appearing in Eq. 

(5.4.7) are obtained including the viscous Jacobians which are not shown. Equation (5.4.7) 

with the Jacobians obtained as in Eq. (5.4.8) is called the discrete Newton’s method ( see Orte- 

ga and Rheinboldt [SO] ). 
’ 

The method used in this work to solve Eq. (5.4.7), for a fixed value of m, is the relaxation 

technique which is described by Whitfield and Taylor [28]. It follows the method proposed by 

Chakravarthy [51] and uses the symmetric block Gaw-Seidel iterative method found in 

Hageman and Young [52]. 

In a global sense,Eq,. (5.4.7) can be Written as . 

( L + B + U ) x  = b (5.4.10) 

where L is a lower block triangular matrix with zeros on the diagonal which is composed of 

the first three terms on the left hand side of Eq. (5.4.7), B is a block diagonal matrix which is 

composed of the terms multiplying Aqf’ 1* on the left hand side of Eq. (54.71, U i s  an upper 

block triangular matrix wit4 zeros on the diagonal which is composed of the last three terms 
. -  



on the left hand side of Eq. (5.4.7), x is the global solution increment vector (Aq's) and, b is 

the global residual vector containing the right hand side of Eq. (5.4.7). 

In the symmetric block Gauss-Seidel iterative method, for each iteration one employs a 

global forward sweep which is followed by a global backward sweep ( hence the name sym- 

metric). Thus, in p iterations there are a total of 2p sweeps. The forward and backward 

sweeps can be described as follows: 

(5.4.11) 

(5.4.12) 

where p = 1,2, 3 ... . The iterative process is started with the forward sweep with p = 1 and 

x(O) = 0. Suppose one is at a point whose indices are i, j, k during the forward sweep. Since 

one is in the forward sweep, the solution at level (2p-1) has already been computed at all 

points whose vertices are either less than i or less than j or less than k. In other words the 

solution at level (2p-1) is known at all points corresponding to the lower block triangular ma- 

tri;ri L. This is the reason the vector L X ( ~ P - ~ )  is moved to the right hand side of Eq. (5.4.11). 

Thus, in order to find the solution at level (2p-1) at the point (i,j,k) all one needs to do is to 

multiply the right hand side of Eq. (5.4.11) by the inverse of B. Here it is understood that the 

right hand side of Eq. (5.4.11) and the matrix B should correspond to the point (ij,k). Note 

that B is either a 4x4 matrix or a 6x6 matrix depending upon the equation set one is solving. 

The solution of Eq. (5.4.11) is obtained by Dolittle's method. For the backward sweep the 

solution is known at points comsponding to the upper block triangular matrix U and Dolittle's 

method is again used for solving (5.4.12). Note that Dolittle's method is a direct method and is 

a compact scheme for Gaussian elimination [53]. For further details, see Whitfield and Taylor 

[28]. Thus, for each value of m+l the corresponding solution vector qn+l*m+l of Eq..(5.4.7) 

c 

Q 

I 

d 

... 
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is obtained through an iterative process. The resulting numerical scheme is called Discretized 

Newton-relaxation @NR) scheme ( see [25], 1271 and [28] ). 

5.5. Boundary conditions. 

The description of a numerical scheme is incomplete without a discussion of the imple- 

mentation of the boundary conditions. For oceanographic problems one needs to speclfy in- 

flow, outflow, viscous wall and free surface boundary conditions. For cases involving temper- 

ature and salinity, in addition to velocity conditions (no slip or free surface), one needs to 

specify either adiabatic or source conditions for temperature and salinity. Since the present 

method employs boundary conforming coordinates, the boundary conditions are specified on 

k = constant surfaces where k could be either E, q or 5. For the specification of inflow and 

outflow conditions, characteristic variables are employed as described by Whitfield and Janus 

[54] and are derived from the Euler equations as follows: 

Neglecting every term other than the terms involving the time derivative and the derivative 

with respect to k, the inviscid portion of Eq. (5.1.1) can be written in quasi-linear form as 

follows: 

aQ -aQ - + K - - = O  a% ak 
(5.5.1) 

- 
if k = E ;  E=- aG if k = q  and K = B  if k = 5 .  Note that aQ aQ where E = - aQ 

A = - = - - =  aF dF aQ & and so on. In other words, K = & Note that, &is the Jaco- 
aq aQ aq 

bian of the coordinate transformation and is a scalar. It can be shown following the description 

in Section 5.2 that the eigenvalues of are given by A = & where x i s  the diagonal ma- 

ttiX containing the eigenvalues of and A is the diagonal matrix containing the eigenvalues 

J 
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of K. Thus, one c m  choose the left and right eigenvectors of R to be the same as that of K. 

Therefore, 

Substituting Eq.  (5.5.2) in Eq. (5.5.1) and re-arranging assuming the matrices Tk and T c  are 

constant matrices, one gets 

(5.5.3) 

where W, = TGA Q. The subscript '0' in T<t denotes that it is a constant matrix. Elements 

of the vector w k  are called the characteristic variables. Depending upon the sign of the corre- 

sponding eigenvalue, the characteristic variables are either prescribed or extrapolated from the 

solution domain in a consistent manner. This procedure is described for the various types of 

boundary conditions below. 

Inflow boundary: 

An inflow boundary, k = constant, is called a codirectional inflow boundary if the flow en- 

tering the boundary does so in the direction of increasing k. Otherwise, if the flow enters in the 

direction of decreasing k, it is called a contradirectional inflow boundary. The terminology of 

codirectional and contradirectional boundaries was first used by Janus [55]. In the case of co- 

directional inflow boundary, referring to Section 5.2 ( Eqs. (5.2.3), (5.2.4) and (5.2.5) ), it can 

be seen that only one eigenvalue is negative and the rest are positive. The characteristic lines 

corresponding to the positive eigenvalues run from outside the computational domain towards 

the boundary and the corresponding charact&istic variables are constant along these lines. 

Similarly, the characteristic line corresponding to the negative eigenvalue runs from b i d e  the 
0 

(E 
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computational domain towards the boundary and the corresponding characteristic variable is 

constant along this line. Thus, the characteristic variables corresponding to the positive eigen- 

values need to be prescribed and the one corresponding, to the negative eigenvalue needs to be 

extrapolated from the solution domain. Thus, for the absolute velocity procedure one has 

(wk 1)b = (wk I), 

(wk 2)b = (wk 2), 

(5.5.4) 

In Eq. (5.5.4) the first three equations correspond to the positive eigenvalues and the last one 

corresponds to the negative, eigenvalue ( see Eq. (5.2.3) ). The subscript 'b' represents the 

boundary, 'a' represents the approaching direction ( outside the computational domain ) and 

'1' represents the leaving direction 

flow 0 
a b f 0 

I 

codirec tional 

( inside the computational domain ). These are m a h d  in 

flow - e 
a 1 

contradirectional 

Fig. 3. Schematic for Inflow / Outflow Boundary Condition 

Fig. 3. In Q. (5.5.4) the fOUr SOlUtiOll variables at the boundary ( Pb, Ut,, Vb and Wb ) are the 

only unknowns which can be obtained by simultaneously solving the set of algebraic equa- 

tions. For contradirectional inflow boundaries one has three negative eigenvalues and one pos- 

itive eigenvalue. Thus, one has 
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(5.5.5) 

In Eq. (5.5.5) note that the subscripts on the right hand side of the last two equations differ 

from that of Eq. (5.5.4). 
.'- 

Outflow boundary: 

The development of the outflow boundary conditions is very similar to the inflow boundary 

conditions. In this case also one has codirectional and contradirectional boundaries. For an 

outflow boundary, the approaching direction is from within the computational domain and the 

leaving direction is towards the exterior of the computational domain (see Fig. 3). For co- 

directional outflow one has three positive eigenvalues and one negative eigenvalue. The char- 

acteristic variables corresponding to the positive eigenvalues are extrapolated from inside the 

computational domain and instead of specifying the characteristic variable corresponding to 

the negative eigenvalue one usually specifies the pressure. The remaining three equations are 

solved for the velocity components. Thus, for a codirectional outflow boundary one has 

I 

(5.5.6) 
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and for a contradirectional boundary one has 

(5.5.7) 

Viscous wall: 

The no slip condition at a viscous wall ( ocean floor for example ) implies that the fluid is at 

rest in the rotating frame. Thus, if the governing equations are solved using relative velocity 

components ( relative velocity procedure ) then they are set equal to zero at a viscous wall. On 

the other hand, if the governing equations are solved using the absolute velocity components 

then from Eq. (4.2.5) one obtains = - - w = Q x f, since 1 = 0. Thus, the cam- 

ponents of the absolute velocity are set equal to the Cartesian components of the vector 2 x E. 

The condition for pressure is vanishing normal gradient at the wall. For a q = constant wall 

this condition is approximately implemented as p,, = 0 where the suffix denotes partial dif- 

ferentiation. Rigorously, vanishing normal gradient condition at a q = constant wall is imple- 

mented as follows: 

= 1 - 
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where n is the normal direction, ak, k=l, 2, 3; are the contravariant base vectors, 

g12, g22 and gB are components of the contravariant metric tensor. The adiabatic condition 

for temperature and zero normal gradient condition for salinity are imposed analogously. 
-. 

Free surface boundary: 

The velocity and pressure conditions have already been discussed in Section 4.3 and their 

implementation is straightforward. For prescribed heat and salt flux one can follow the ap- 

proach described above for the viscous wall case and obtain 

f 

Q 

where Q is the prescribed heat fluxand x; is the thennal conductivity. A similar expression can 

be obtained for the q-derivative of salinity that involves the salt flux. 
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6. Grid Generation 

In this work the governing equations of the ocean flows are solved in a curvilinear coordi- 

nate system generated around the earth. The results of ocean flows presented in this report 

uses the rigid lid condition though this is not an inherent restriction of the solution methodolo- 

gy as well as the grid generation methodology. Example calculations of free surface flows for 

other geometries have been included using the same solution and grid generation methodolo- 

gies. The calculation of ocean flows with free surfaces is currently underway. 

Basic ideas about generating general curvilinear grids over complicated geometries are 

dealt with in detail in the book by Thompson, Warsi and Mastin [ 131. Based on the work of 

Thompson and his coworkers the original EAGLE code was written. Later a graphical user 

interface was added to EAGLE and the resulting software is called EAGLEView [ 141. Jiang 

[56] used EAGLEView to generate the grids used in this work. 

For generating the ocean grids Jiang used the ETOPOS dataset. Note that the format used to 

write ETOPOS dataset traverses the earth in latitudinal circles from the north pole to the south 

pole with an increment of 0.2 degrees. Along each latitudinal circle the depth is written for 

each longitude in 0.2 degrees increment. Depths are recorded as positive values. If a point is in 

the land mass then the height of that point above sea level is recorded as a negative value. Both 

the depth and height are given in feet. The original code supplied for reading this dataset was 

modified to write the output in terms of x, y and z values with respect to a Cartesian coordi- 

nate system with its origin at the center of the earth. One prescribes a range for longitude and 

latitude corresponding to the region of one’s interest as inputs to this code. This code works as 

follows. Within the prescribed range, once a land point is encountered its height is reassigned 

to a constant value. Small islands are manipulated in the following way. Suppose one is at a 

point (i, j) where i corresponds to the longitudinal direction and j corresponds to the latitudinal 

direction. If this point is a €and point and its neighbors (i+l, j), (i-1, j), (i, j+l) and (i, j-1) are 
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ocean points then one is dealing with a one point island. If the island is kept then one has to 

construct coordinate lines around it, and so it gets sunk to the average depth of its four neigh- 

bors. Similarly, along the coasts if three of the four neighboring points of a land point is water 

then that point is sunk and the average depth of its neighbors is assigned to it. In addition, if 

I 

Fig. 4. Depth Enhanced View of the Gulf of Mexico 

points (i, j) and (i+l, j) are land points and (i-1, j), (i, j+l), (i+l, j+l) and (i+2, j) are water 

points then the land points are sunk and replaced with the average depth of the above men- 

tioned neighbors. In other’words peninsulas with two point width (0.2 degrees) are sunk. Also 

a 
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sunk are peninsulas with three point width (0.4 degrees). Similarly one point lakes, two point 

bays and three point bays are filled with land. Once this process is done, two output files are 

written out. One file has the constant land heights and the actual ocean floor data in terms of x, 

4 

Fig. 5. Actual Bottom Surface Grid of the Gulf of Mexico 

y and z values and the other file has the constant land height values and the ocean depth at 

every point increased by a constant value ( say 5000 feet). The land points are assigned a 

constant value so that one can easily recognize the land area when the data is read into EA- 

GLEView. The file with enhanced ocean depth is used to view the ocean floor and the coastal 

area clearly. As an example, the Gulf of Mexico with a part of the Atlantic ocean is shown in 

Fig. 4 in which the land eespecially the islands ) and coastal areas and the ocean floor are all 
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clearly and distinctly visible. The other file is used to actually build the grid. It can be seen 

from Fig. 4 that the coastal lines are still not smooth. In order to smooth the coastal lines with- 

out destroying the shape of the geometry too much, points are manually picked along the 

coastlines using the depth enhanced file. When this EAGLEView script file is written out and 

reread with the actual surface file the points along the actual coastlines would have been 

picked up automatically. These points are connected using cubic splines and thus a smooth 

coastal line is created. Creation of smooth coastlines is the major task in the present method. 

Once this is done the next task is to decide how to block the region so that it does not result in 

highly skewed grid lines. Experience plays a major role in this decision making process. Once 

the block boundaries are identified, points are distributed along them and are interconnected to 

create a grid surface. Since only the points along the boundaries are used this surface will not 

lie on the ETOPO5 dataset. Hence, this grid is projected onto the ETOPOS dataset radially 

thus generating the bottom surface. In the next step this bottom surface is projected radially 

outwards onto a sphere of radius one. All the intermediate surfaces are then generated using 

interpolation. The surface grid on the actual ocean floor for the region shown in Fig. 4 is 

shown in Fig 5. 
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7. Results 

' b o  sets of results are presented here with different objectives. In Section 7.1 the test cases 

used to validate the code are dealt with. These include laminar flat plate results, laminar back- 

ward step solutions, driven cavity with buoyancy results and Ekman layer solutions. In addi- 

tion, example calculations of free surface flows in an inertial frame around ship hulls are also 

included in this section. In section 7.2 results for ocean computations are presented. These 

include turbulent Ekman layer calculations, flow field in the Atlantic ocean and flow field in 

the entire world ocean. These results include only the hydrodynamic phenomena. The calcula- 

tions with the thermodynamic variables are in progress. 

7.1 Validation comparisons. 

Classical boundary layer theory says that for the flow over a flat plate with a Prandtl num- 

ber of unity and with adiabatic wall conditions, the temperature profile for the thermal bound- 

ary layer would be the same as the velocity profile for the velocity boundary layer. Since the 

0 K  equations for temperature and salinity are similar, except for the parameters, setting - Sc = - Pe 

and using the condition dS = 0 at the wall, should result in a salinity profile which is also the an 
same as the velocity profile. For laminar flows the velocity profile over the flat plate is known 

as the Blasius profde. The above observations can be seen to be correct from Fig. 6 in which 

the computed velocity, temperature and salinity profiles are plotted against the Blasius profile. 

Another interesting point to note from Fig. 6 is that there are only a few points in the viscous 

region and this is sufficient to resolve the Blasius profile. This is a consequence of the method 

used to ob& the numerical flux at cell faces. ' 

How over a backward f a d g  step has been an interesting problem that has received consid- 

erable attention for more than a decade now. The flow exhibits complex behaviors Such as 
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Fig. 6. Flow over a Flat Plate. Re = 10000, Pr =1.0 

separation and reattachment and the geometry is simple. Armaly et al. [57] have done exten- 

sive experimental work for both laminar and turbulent flows over backward facing step. Usu- 

ally the laminar results are used for code validation purposes and the turbulent results are used 

for validating turbulence models. However, the experimental work of Armaly et al. did not 

include any thermal effects. Rhodes and Acharya [58] have computed the laminar flow over a 

backward facing step with forced convection. They prescribed a parabolic profile for velocity 

and set the non-dimensional temperature to be zero as the inlet conditions. These conditions 

were prescribed at the mouth of the step. The temperature at the bottom wall was set to be 

unity and the adiabatic wall condition was used at the top wall. The temperature at the vertical 

wall section below the mouth of the step was set at zero. The flow Reynolds number was taken 
. . i  

as 389 and the Prandtl number was taken as 0.71 which corresponds to air. Based on step 

height and maximum inlet velocity the Reynolds number was taken as 275 in the present 

study. This corresponds to the case of Re = 389 by Armaly et al. [57] based on their non-di- 

mensionalization. A grid of 201x101 points in the axial and normal directions respectively 

has been chosen for the geometry described in Rhodes and Acharya. With a CFL number of 50 

the residual drops to in 1500 iterations. The converged velocity and temperature profiles 

are shown in Figs. 7 and''. Using a different eigensystem compared to that prescribed in 
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Beddhu et al[16], Taylor [59] has developed a two-dimensional flow code that includes tem- 

perature. The agreement between Taylor and Armaly et al., for the velocity profiles is excel- 

lent, whereas there is very good agreement between the present scheme and that of Taylor [59] 

for the temperature. Both schemes differ from that of Rhodes and Acharya [58]. Taylor made 

his computations on a 101x51, uniform grid. The present computations have used a grid with 

stretching from the mouth of the step and from both the upper and lower walls. Rhodes and 

Acharya used an adaptive grid strategy with a very coarse grid (47x38) and that could be the 

reason for the discrepancies seen in the temperature profiles. 

Natural convection in a square cavity is another important test case that has been used ex- 

tensively for validating codes for which bench marking results are available. Based on the 

methodology presented in Beddhu et al. [19], Siong [36] has developed an algorithm for solv- 

ing the five governing equations without the salinity equation. Computation of this test case 

using the algorithm developed by Siong for various Raleigh numbers has resulted in excellent 

agreement with the benchmarking results [60]. Figure 9 indicates the results for a Raleigh 

number of lo6. Further details can be obtained from Siong [36]. 

So far, all the test cases mentioned are computed with no rotation. As can be seen they have 

been selected to specifically test various aspects of the scheme. In the following, test results 

are included that includes rotation but excludes temperature and salinity at the present time. 

Ekman boundary layer profiles, for the governing equations of the geophysical flows, are 

the classical counterpart of Blasius boundary layer profiles for the Navier-Stokes equations in 

an absolute frame. Under suitable simplifying assumptions, closed form analytical expres- 

sions, the Ekman boundary layer profiles, can be obtained for a geostrophic flow over a flat 

viscous surface where the viscous surface can either be a solid wall or a free surface. A de- 

tailed discussion of the governing equations and their solutions is available inpedlosky [7]. A 

schematic diagram of the physical domain is given in Fig. 10. A Cartesian coordinate system 
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Fig. 9. Natural Coavection in a Squ-hre Cavity 
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xyz is introduced in a rotating frame such that the y-axis coincides with the axis of rotation. 

The Reynolds number was chosen to be 1oooO. The point distribution is 51,101 and 2 in the 

Fig. 10. Physical Domain ( not to Scale ) 

i, j and k direction respectively. At all side boundaries extrapolation conditions were used and 

at the bottom boundary a geostrophic flow is imposed in the z ( or k ) direction, with the fol- 

lowing values for the non-dimensional quantities: u = 0, v = 0, w = 1 and - = - 2. The top 

wall is treated either as a viscous wall or as a free surface with a applied wind stress in the x ( 

or i ) direction. Starting from an initial condition of a geostrophic flow everywhere, converged 

solutions are obtained in 2000 cycles. The time step used is 0.05. Excellent agreement is seen 

between the computed and analytical results in Fig. 11 for the case of no-slip wall, and, Fig. 

12 for the case of applied shear stress at the free surface. As stated in Beddhu, Taylor and 

Whitfield [16] these test cases were used to confirm the new formulation for the Coriolis 

force. Further details can be obtained from Beddhu, Taylor and Whitfield [la. 
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Fig. 11. Ekman Boundary Layer with a No Slip Wall 
Re = 1oooO; Rotation about y - axis 
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%W 

Fig. 12. Ekman Boundary Layer with Applied Shear Stress at the Free Surface 
Re = 1oooO; Rotation about y - axis 

Free surface flows are important in many other areas of applications in addition to oceano- 

graphic applications. The US Navy is interested in the free surface flows in the vicinity of ship 

hulls. These are treated as hertial flows. Both steady and unsteady flows around various ship 

hulls have been computed with the UNCLE solver (see [33], [37] and [38]) . In Fig. l?(a) the 
3 
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Fig. 13(a). Comparison of the Computed and Experimental Wave Profiles 
along the Wigley Hull. Fr = 0.289 ; Re = l,OOO,OoO. 

Fig. 13(b). Comparison of the Computed and Experimental Wave-Contours 
for the Wigley Hull. Fr = 0.289 ; Re = l,OOO,OOO. 

computed wave profile along the Wigley hull is compared with the experimental wave profile. 

Figure 13(b) shows the comparison between computed and experimental wave contours. In 

both these figures the ship is stationary and a uniform flow is flowing past it. Figures 14(a) 

and 14(b) show the unsteady wave response due to a heaving Wigley hull placed in a uniform 
7 

flow. The heaving is produced by oscillating the hull in a sinusoidal fashion in the xy-plane 
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Fig. 14(a). Perspective View of the Unsteady Wave Pattern due to the Heaving 
Wigley Hull at time 5.251: Fr = 0.289. 

Fig. 14(b). Perspective View of the Unsteady Wave Pattern due to the Heaving 
Wigley Hull at time 6.0T. Fr = 0.289. 

with a reduced frequency of 9.81 based on length. The wave patterns are shown at 5.25T and 

6.0T. Further results are presented in Ref. [38]. In Fig. 15, the comparison is shown between 

the computed and experimental wave profiles along the DTMB Model 5415 hull placed in a 

uniform flow. Computed and experimental wavecuts off the body are compared in Fig. 16. 

7.2 Ocean results. 

Eddy viscosity 

The viscous boundary copditions at the free surfake used in the present study are derived in 

Section 4.5 ( see Beddhu and Whitfield [21] for details ). From Section 4.5, the non-dimen- 
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Fig. 15. Comparison of Computed and Experimental Hull Profiles for Model 

DTMl3 5415. Fr = 0.2756; Re = 12021000. 

IE 

sional viscous stress is given by 5 = z, where %*is the dimensional viscous stress obtained 
p o u o  

from the ECMWF-data, Trenberth et aL [61]. For the planetary scale ocean flow problem the 

reference length was chosen as the radius of the earth, and the reference velocity was chosen 

as, Uo = I Q I L where I Q I = 2 z/86400 rads. The density of water was taken as 1035 

kg/m3. The only quantity over which uncertainty prevails in the ocean modeling community 

is the reference viscosity7 po, whose unit is kg/m-s. If the reference viscosity is chosen as the 

molecular viscosity for water ( 0.001 kdm-s ) then the Reynolds number for such a flow is 

I 1  

(I 

3.05 x 

Choosing a higher value of the reference viscosity is equivalent to introducing a constant eddy 

viscosity. This will result in a lower value of the Reynolds number as well as lower the applied 

non-dimensional shear stress. The predominant trend in the ocean modeling community is to 

Also the non-dimensional value of the applied wind stress becomes very large. a 
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Fig. 16. Comparison of Computed and Experimental Stereophotographic Wave Cuts 

Model 5415; z/L = 0.0965; Fr = 0.2756; Re = 12021000. 

choose a constant eddy viscosity. In fact, daerent values of the constant are used depending 

upon the direction of the coordinate lines. Typically, the values chosen for the horizontal are 

much larger than the values chosen for the vertical. 

In the oceans, large scale currents (or transports) occur in the horizontal whereas large scale 

gradients occur in the vertical (near the free surface and the bottom). This case is analogous to 

a high speed flow over & airfoil. To fix ideas, assume that the flow is from left to right along 

the x-axis, in the xy-plane, and the airfoil is at the origin. The y-axis is normal to the flow 

direction. In this case, even though large scale transport occurs in the x -dk t ion ,  large scale 

gradients occur in the y-direction. In the field of Aerospace Engineering, in order to compute 

such a flow, one would normally ignore the viscous effects in the x-direction- ( the predomi- 

nant flow direction ) and qtain the viscous effects only in the y-direction. This is the basic 

idea behind the thin layer Navier-Stokes equations approach proposed by Baldwin and b m a x  



c621. In contrast to this philosophy, in ocean modeling, large values of eddy viscosities are 

used in the horizontal, which is predominantly a transport direction, whereas smaller values 

of the eddy viscosity are used in the vertical direction, which is dominated by large gradients 

in the flow variables. It is not clear whether there is a physical basis for this apparently contra- 

dictory approach used widely in the ocean modeling community, or, whether the numerics in- 

volved in solving the various approximate equations necessitate such usage. 

In calculating atmospheric flows it is frequently assumed that the planetary boundary pro- 

file is logarithmic in nature in the inner region from the sea-level upwards...In fact, the equa- 

tions used in the ECMWFdataset [61] to calculate the wind stresses fromthe wind speeds 

malces use of this assumption. These equations, for the speed range over 3 d s ,  are first pre- 

sented by Large and Pond [63]. Measurements made by Chriss and Caldwell[64] at the Ocean 

floor indicates that the universal log-law is obeyed by the velocity profiles. Hence, it seems 

plausible to make the assumption that the log-law is valid in the inner layer of the ocean 

boundary layer from the sea-level downwards also. 

Corresponding to a wind speed of 10 m/s, one obtains a wind stress ( zfs ) of roughly 0.17 

N/m2. This implies that the friction velocity is uz = Js = 0.0128 d s .  That is the friction 

velocity is of the order of one c d s .  The non-dimensional length y+is given by 

y + = yuz/vo, where yo = po/po. Substituting the appropriate values and taking po = 0.001 

kg/m-s ( molecular viscosity of water ), one obtains y + = 13265 y, where y is in meters. 

Thus, when y + = 5, which is typically in the sub-layer, the corresponding value of y is 0.38 

mm. (0.00038 meters). In order to resolve the sub-layer near the ocean free surface one has to 

have a grid whose first grid point from the free surface has be less than 0.37 mm away. 

Compared to the radius of the earth this number is indeed very, very small. 

Baldwin-Lomax model [62] has been widely used in Computational Ruid Dynamics area 

for predicting the mean flow quantities in a turbulent flow. Originally proposed for wall 
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bounded thin shear layers, this model has found successful applications in other areas as well. 

This model falls under the category of algebraic closure of the turbulent closure models. It 

attempts to provide the right turbulent viscosity from the mean flow itself. It also has a wake 

correction formulation to take into account the effects of wakes. For the ocean flows this wake 

correction is not needed. If the grid has sufficient resolution, this model resolves the flow 

structure including the sub-layer and reproduces the log-law quite well. 

Since the reference viscosity used in the nondimensionalization should have no bearing on 

the solution and since the only obvious choice that is physically meaningful is the molecular 

viscosity of water, it was decided to use the molecular viscosity of water as the reference vis- 

cosity, to obtain the turbulent Ekman boundary layer solution using the Baldwin-Lomax mod- 

el, with an applied wind shear at the free surface. The Ekman layer is another example where 

even though the flow is predominantly in the horizontal, the viscous effects are important only 

in the vertical which is the direction of dominant flow gradients. The issue of horizontal vis- 

cosity coefficients does not arise in this test case. 

A rectangular grid, as shown in Fig. 10, was constructed with 101,201 and 2 points in the x, 

y and z ( in other words i, j and k ) directions respectively. The angular velocity vector is 

aligned along the y-direction ( vertical ) as before. A wind shear of 0.17 N/m2 is applied 

along the x-direction. It was decided to focus only near the free surface region. So in order to 

simulate a deep ocean condition the bottom was kept at 12750 m depth. In non-dimensional 

lengths the bottom boundary is placed at 0.998 and the top boundary is placed at 1 ( L = radius 

of earth = 6365000 m ). Along the x-direction the boundaries are placed at x=O and x=I. Only 

two grid points are used in the z-direction at 0 and 0.1 respectively. The grid in the x-direc- 

tion is uniform and in the y-direction it is stretched from the free surface (y=1) with the first 

point from the free surface placed at This corresponds to a physical distance of 0.06 

mm. So this point is well within the sub-layer. At the x=O boundary inflow boundary condi- 
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tions are specified and at the x=l boundary outflow boundary conditions are specified, both 

using characteristic variables. At both the boundaries in the z-direction extrapolation bound- 

ary conditions are used. At the bottom boundary the boundary condition depends upon wheth- 

er the flow is coming into the boundary or leaving it. This is determined by taking the dot 

product of the local velocity vector with the normal to the surface. The Reynolds number in 

this case becomes 3.05 x The main interest is to find out whether the log-law is repro- 

duced, and, what kind of dimensional values of the velocity components are obtained at the 

the free surface. From observations it is known that a surface wind of 10 m/S would produce 

an ocean current in the order of 10 c d s .  The initial condition is rest everywhere and the shear 

stress is applied at the free surface. With a time step of 0.05 it take about 250 cycles for the 

solutions to converge. However, the run was continued up to 3000 cycles and the solutions 

presented are at the 3000th cycle. 

Normally, the universal velocity profile is plotted such that the velocity is zero at the vis- 

cous surface and reaches its maximum in the interior. However, in the present case the maxi- 

mum velocity occurs at the free surface. So in order to compare with the traditional log-law 

what is plotted in Fig. 17 is the quantity Us - u + E ,  where Us is the surface velocity and E is 

the small correction applied so that uf  = 1 at y + = 1 ( i.e. log y + = 0 ). The value of E 

turns out to be 0.7752. The logarithmic portion is given by u + = l/lc In (y +) + C where K 

is the von Karman constant and is taken to be 0.41 and C = 4.9. It is clearly seen from Fig. 17 

that the u-component of velocity obeys the universal velocity profile. The w-component of 

velocity is plotted in Fig. 18. Since the applied stress is in the x-direction only the derivative 

of w with respect to y should be zero at the free surface and it is indeed the case as can be seen 

from Fig. 18. The eddy viscosity is plotted in Fig. 19 as a function of y'. The dimensional 

values of the velocity components at the free surface are 44.01 cm/s for u>omponent and 

6.25 cm/s for the w-component. These values are not only reasonable but also show that the 
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Fig. 17. Turbulent Ekman Layer due to Applied Shear Stress at the Free Surface 
Re = 3.05 x 1015 ; zfs = 0.169 N/m2 
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Fig. 18. Turbulent Elanan Layer due to Applied Shear Stress at the Free Sur- 
face Re = 3.05 x 1015 ; zfs = 0.169 N/m2 

so called Ekman drift is present ixi the results. Further study is underway to plot the Elanan 

drift as a function of Reynolds number in the hodographic plane. 
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Atlantic ocean 

This test case was chosen to demonstrate the capability of a Navier-Stokes code and the 

results must be considered as preliminary. Figure 20 shows a satellite view of the entire grid 

and Fig. 21 shows the view of the grid in the polar region (Arctic ocean). 

f 

Fig. 20. Satellite View of the Atlantic Grid 

c 

a 

The origin is at the center of the earth, the y-axis passes through the North pole, the x axis 

passes through the intersection of the Greenwich line with the equator. A set of points were 
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Fig. 21. Satellite View of the Polar Region 

Fig. 22. Velocity Vectors at Mid Depth 

chosen along the continents and they were smoothed using cubic splines. Thus, the two outer 

most S-shaped curves were generated. Realistic bottom topography is used to generate the 

surface grid on the ocean floor. From coast to coast, 51 grid points were distributed with pack- 

ing near the coasts. This corresponds to the t ( or k ) direction. The q ( or j ) direction corre- 

sponds to the radial direction along which 41 points were distributed with packing near the 

bottom as well as near the free surface. However, this packing was not sufficient to resolve the 

viscous sub-layer as was done in the turbulent Ekman layer case. The direction increases in 

the meridional direction from latitude 70 S up to the Asian continent in the north to include the 
1 
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Fig. 23. Velocity Vectors at the Free Surface 

P 

Fig. 24. Velocity Vectors in the Polar Region (Mid Depth) 

Arctic Ocean. 13 1 points were distributed along this direction with packing . near -- 70 S and near 

the Asian continent. Note that the inclusion of the poles does not need special .. c treatment in the 

present approach. For viscous calculations a relative spacing of 0.001 was chosen. 

The boundaries i=l, i=imax, j=1, k=l and k=kmax were treated as viscous walls, j-jmax 

was treated as a rigid lid (using the impermeable wall boundary condition). Part of the k=l 

boundary corresponding to the Drake pass was treated as an inflow boundary with a uniform 

inlet velocity of 1 m/s and part of the k=kmax boundary corresponding to the Agulhas pass 

was treated as an outflow boundary. The Reynolds number based on Earth's radius and the 
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Fig. 25. Velocity Vectors in the Polar Region (Free Surface) 

equatorial rotational speed turns out to be of the order of A very highly refined grid 

would be needed to resolve such a flow. Hence, a Reynolds number of lo6 was chosen for the 

viscous calculations. It is to be noted that neither wind stresses nor temperature and salinity 

were included in the calculations. Thus, the results are purely governed by the dynamics of the 

flow. Starting from the initial condition of rest in the relative frame, the Earth was rotated with 

one revolution per day through the use of the grid speed vector E. For each complete rotation 

628 time steps were used. Figure 22 shows the velocity vectors at mid depth and Fig. 23 shows 

the same at the free surface for the entire Atlantic ocean. The corresponding cases for the Arc- 

tic region are shown in Figures 24 and 25. These figures mainly show the effects of the curva- 

ture of the Earth, bottom topography and the shape of the continents. 

World ocean 

Since the motivation of this work has been to compute the planetary scale ocean flows, the 

final set of results are given on a model ocean which has true bottom topography but the side 

boundaries are approximated. Thus, the Gulf of Mexico is ignored and Australia and Asia are 

joined with each other, among other simplifications. There are 26 blocks each with varying 
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sizes with a total of approximately 3.53 million points. In each block the number of points in 

the vertical is kept the same at 41 points. Since it is not yet practical to use such a fine spacing 

near the free surface and the bottom boundary as is done in the turbulent Ekman layer, for the 

computations of the world ocean the first point from the free surface is adjusted according to 

the depth. Depending upon the depth the first point could be either a few cms away or as much 

as meter away from the free surface. As a rough estimate, from discussions above the value of 

y + at one meter depth can be as large as 13000 which means that major portions of the inner 

Computed velocity vectors 
shaded by velocity magnitude 

-7 

-91 .++- Y 

Measured wind velocity vectors 
shaded by velocity magnitude ..,, . _J 

.... . 

Q 

8 

Fig. 26. Comparison of Computed World Ocean Surface Velocity Vectors with 
Wind Velocity Vectors Obtained from ECMWF Dataset 

region will not be resolved. Also the gradients computed at the free surface will be incorrect. 

So, it was decided to use'a constant eddy viscosity for this computation. From Fig. 19, it is 
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seen that the non-dimensional eddy viscosity reaches a maximum of 25000. In dimensional 

units this corresponds to 25 kg/m-s. So a value of 100 kg/m-s has been chosen as the eddy 

viscosity. Therefore, the kinematic eddy viscosity becomes 0.0966 m2/s. The choice of this 

particular value is completely arbitrary. This value of pot effectively reduces the Reynolds 

number to 3.05 x IO1'. The non-dimensional eddy viscosity is one and is kept the same in all 

directions. 

Figure 26 shows the velocity vectors of the computed ocean currents at the free surface. 

These results are obtained starting from the initial condition of rest with applied wind stress at 

the free surface. The results presented are after a four day spin up. Figure 26 also shows the 

wind vectors as obtained from the ECA4WF dataset. In both figures the vectors are colored 

according to the velocity magnitude. It can be seen that the computed surface currents exhibit 

all the major features of the wind data. There is correspondence in the magnitude of the veloc- 

ity vectors as well, i.e., where the wind velocities are high ( indicated by red ) the ocean sur- 

face current velocities are also high and where the wind velocities are low ( indicated by blue 

) the ocean surface current velocities are also low. There are discrepancies in the south east 

Pacific ocean where the directions of the wind and ocean currents seem to deviate from each 

other the most. This result is presented here only as a preliminary result and further investiga- 

tions are underway. 

5 
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Conclusions 

This rep-rt presents an approach for solving ocean flows which is a tod departure from the 

approaches currently being used. However, it  should^ be noted that the proposed approach is 

routinely being used in other areas involving fluid flows. The approach of computational 

physical oceanography involves solving the complete set of (Reynolds Averaged) Navier- 

Stokes equations on nonorthogonal curvilinear grids. During the course of this investigation, a 

detailed analysis of the governing equations has been undertaken and many new theoretical 

results have been obtained. From a theoretical point of view, the new governing equations pro- 

posed in Section 4.2 and the new viscous term proposed in Section 4.3 & important. The 

extent to which these results will alter the flow field of the oceans remains to be seen. It is 

shown in Section 4.6 that the hydrostatic approximation is a coordinate system dependent 

approximation. The new formulation of the Coriolis force could be the basis for alternate nu- 

merical schemes one of which is the present scheme. The results of the turbulent Ekman layer 

shows that the modeling of the turbulent viscosity is still an unsettled problem. It also shows 

Q 

6 

the grid resolution that is needed ( in the "Vertical77 ) to solve the ocean flow field in a consis- 

tent manner. The results for the Atlantic ocean and the world ocean show encouraging trends 

. 

and hrther investigation is needed. Computation of the ocean flows with an evolving free sur- 

face also needs to be carried out. Time dependent surface forcing fields are;,another area that 

needs to be investigated. The present method is formulated to handle such problems. The 

CPU-time per grid point per time step on an SGI R8000 architecture for the world grid is 

0.000462 seconds. 

f 
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Appendix 

A. Coordinate form of the momentum equations in unsteady Eulerian Coordi- 

nates 

In order to express the tensor -invariant form in terms of a a particular coordinate system all 

one needs is the following identi@: 

where, F could be a vector or tensor; Sk, k=1,2,3 are the curvilinear coordinates; and ak, 

k=1,2,3 are the contravariant base vectors. Note that, ak = qk. Summation over repeated 

indices is implied in Eq. (A.1). Note that, one can express the quantity F in either Cartesian or 

curvilinear coordinates. In the so called partial transformation, F is expressed in terms of Car- 

tesian coordinates. Upon expressing F ( assuming F to be a tensor ) and gk in Cartesian coordi- 

nates, Eq. (A.1) becomes 

V F = --[& i a  (2  Fm)]&, &aSk 
Equation (A.2) can be expanded form = 1,2 and 3 to obtain the three components. Note that, 

since F is assumed to be a tensor V * F is a vector. Equations (4.6.2) -- (4.6.4) can now easily 

be obtained using (A.2). 
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