Electromechanical properties of superconductors for DOE/OFE applications. Final report

PDF Version Also Available for Download.

Description

In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor`s electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications.

Physical Description

[50] p.

Creation Information

Ekin, J.W. & Bray, S.L. September 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor`s electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications.

Physical Description

[50] p.

Notes

INIS; OSTI as DE98006432

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98006432
  • Report No.: DOE/ER/54208--T1
  • Grant Number: AI03-93ER54208
  • DOI: 10.2172/656801 | External Link
  • Office of Scientific & Technical Information Report Number: 656801
  • Archival Resource Key: ark:/67531/metadc707370

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 4, 2015, 5:48 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ekin, J.W. & Bray, S.L. Electromechanical properties of superconductors for DOE/OFE applications. Final report, report, September 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc707370/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.