Electromagnetic Interactions GEneRalized (EIGER): Algorithm abstraction and HPC implementation

PDF Version Also Available for Download.

Description

Modern software development methods combined with key generalizations of standard computational algorithms enable the development of a new class of electromagnetic modeling tools. This paper describes current and anticipated capabilities of a frequency domain modeling code, EIGER, which has an extremely wide range of applicability. In addition, software implementation methods and high performance computing issues are discussed.

Physical Description

9 p.

Creation Information

Sharpe, R.M.; Grant, J.B.; Champagne, N.J.; Wilton, D.R.; Jackson, D.R.; Johnson, W.A. et al. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Modern software development methods combined with key generalizations of standard computational algorithms enable the development of a new class of electromagnetic modeling tools. This paper describes current and anticipated capabilities of a frequency domain modeling code, EIGER, which has an extremely wide range of applicability. In addition, software implementation methods and high performance computing issues are discussed.

Physical Description

9 p.

Notes

OSTI as DE98005515

Source

  • 29. plasmadynamics and lasers conference, Albuquerque, NM (United States), 15-18 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98005515
  • Report No.: SAND--98-1239C
  • Report No.: CONF-980655--
  • Grant Number: AC04-94AL85000;W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 658422
  • Archival Resource Key: ark:/67531/metadc707363

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 14, 2016, 9:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sharpe, R.M.; Grant, J.B.; Champagne, N.J.; Wilton, D.R.; Jackson, D.R.; Johnson, W.A. et al. Electromagnetic Interactions GEneRalized (EIGER): Algorithm abstraction and HPC implementation, article, June 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc707363/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.