Relaxation of the lower frit loading constraint for DWPF process control

PDF Version Also Available for Download.

Description

The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit ... continued below

Physical Description

26 p.

Creation Information

Brown, K. G. March 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit loading constraint would be satisfied; however, approximately half of the SME Batches produced after Batch 98 have violated the lower frit loading constraint. If the DWPF batches did not have to be remediated and additional frit added because of the lower frit loading limit, then both, the performance of the DWPF process and the waste loading in the glass produced would be increased. Before determining whether or not the lower frit loading limit can be relaxed or omitted, the origin of this and the other constraints related to durability prediction must be examined. The lower limit loading constraint results from the need to make highly durable glass in DWPF. It is required that DWPF demonstrate that the glass produced would have durability that is at least two standard deviations greater than that of the Environmental Assessment (EA) glass. Glass durability cannot be measured in situ, it must be predicted from composition which can be measured. Fortunately, the leaching characteristics of homogeneous waste glasses is strongly related to the total molar free energy of the constituent species. Thus the waste acceptance specification has been translated into a requirement that the total molar free energy associated with the glass composition that would be produced from a DWPF melter feed batch be less than that of the EA glass accounting for both prediction uncertainty (including bias) and measurement uncertainty to a confidence level of 95%. However, it was discovered during Integrated DWPF Melter System (IDMS) testing that under certain conditions, DWPF glasses were prone to phase separation resulting in glasses that had noticeably unpredictable and, at times, unacceptable leaching behavior. This document details an evaluation of the continued applicability of the low frit constraint for DWPF Slurry Mix Evaporator (SME) acceptability determinations.

Physical Description

26 p.

Notes

INIS; OSTI as DE00752022

Medium: P; Size: 26 pages

Source

  • Other Information: PBD: 1 Mar 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-RP-99-00355
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/752022 | External Link
  • Office of Scientific & Technical Information Report Number: 752022
  • Archival Resource Key: ark:/67531/metadc707346

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 6:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brown, K. G. Relaxation of the lower frit loading constraint for DWPF process control, report, March 2000; South Carolina. (digital.library.unt.edu/ark:/67531/metadc707346/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.