Gallium Zeolites for Light Paraffin Aromatization

PDF Version Also Available for Download.

Description

The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with ... continued below

Physical Description

9 p.

Creation Information

Price, G.L. & Dooley, K.M. February 10, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with the zeolite, and because the large hydration shells associated with aqueous 3+ cations hinder transport. Metals such as Ga which commonly exist in higher oxidation states need to be reduced to promote ion-exchange and this is the reason that reduction of gallium-containing catalysts for light paraffin aromatization often yields a dramatic enhancement in catalytic activity. We have effectively combined reduction with ion-exchange and we term this combined process ''reductive solid-state ion-exchange''. Our hypothesis has largely been proven true, and a number of the papers we have published directly address this hypothesis.

Physical Description

9 p.

Notes

OSTI as DE00006588

Medium: P; Size: 9 pages

Source

  • Other Information: PBD: 10 Feb 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG05-92ER14291
  • DOI: 10.2172/6588 | External Link
  • Office of Scientific & Technical Information Report Number: 6588
  • Archival Resource Key: ark:/67531/metadc707243

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 10, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 8:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 21

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Price, G.L. & Dooley, K.M. Gallium Zeolites for Light Paraffin Aromatization, report, February 10, 1999; United States. (https://digital.library.unt.edu/ark:/67531/metadc707243/: accessed May 26, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.