Ternary particles with extreme N/Z ratios from neutron-induced fission

PDF Version Also Available for Download.

Description

The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

Physical Description

18 p.

Creation Information

Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M. et al. May 16, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

Physical Description

18 p.

Notes

INIS; OSTI as DE00755879

Medium: P; Size: 18 pages

Source

  • Pont d'Oye 4th Conference, Habay-la-Neuve (BE), 10/06/1999--10/08/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/PHY/CP-101895
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 755879
  • Archival Resource Key: ark:/67531/metadc707186

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 16, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 4:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M. et al. Ternary particles with extreme N/Z ratios from neutron-induced fission, article, May 16, 2000; Illinois. (digital.library.unt.edu/ark:/67531/metadc707186/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.