Title: NUCLEAR PHYSICS INPUT FOR SOLAR MODELS

CONF-9711114

RECEIVED
APR 06 1998
OSTI

Author(s): Attila Csoto, Theoretical Division, T-5, MS B243, P.O. Box 1663, Los Alamos National Laboratory, Los Alamos, NM 87545 USA


DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
1 Introduction

One of the most exciting fields of research these days is neutrino physics. Various experiments have been producing a large number of interesting results about the neutrino, yet after decades of work we still do not know even the most basic properties of these particles. The pioneering experiments that measure neutrinos coming from the sun produced the first, and still strongest, evidence for the possibility of nonzero neutrino mass, and hence for physics beyond the standard model. For a review of solar neutrino research, see 1.

Solar models contain input parameters from many fields of physics. For any reliable prediction of the solar neutrino fluxes, these parameters must be firmly established. Nuclear physics provides the rates of solar fusion reactions as input parameters for solar models. For a very recent review of our current understanding of these reactions, see 2. In the following we shall discuss a microscopic model description of two important solar reactions, \( ^7\text{Be}(p, \gamma)^8\text{B} \) and \( ^3\text{He}(^3\text{He}, 2p)^4\text{He} \), in detail.

2 Model and computational details

Currently the best dynamical description of \( A = 6 - 8 \) nuclei can be achieved by the microscopic cluster model. This model assumes that the nuclei consist of 2 – 3 clusters. While the clusters are described by simple harmonic oscillator shell-model wave functions, the intercluster relative motions, which are the most important degrees of freedom, are treated rigorously. This model satisfies the correct bound- and scattering asymptotics of the wave functions,
and satisfactorily reproduces the positions of the important breakup- and re-
arrangement channel thresholds and separation energies.

Because of the low temperature of our sun (on nuclear scales) the most
effective energies for solar reactions are very low, being in the keV region. At
such low energies the electromagnetic strength is shifted to large radial inter-
particle distances. Thus, in order to calculate charged capture cross sections
reliably, one must use computational methods which can supply correct bound-
and scattering wave functions up to a few hundred fermi distances with high
precision. Here we use the Kohn-Hulthén variational method for scattering
states and the Siegert variational method for bound states. We briefly
discuss these methods in a simplified manner, the generalization for realistic
calculations is straightforward.

The Kohn-Hulthén method starts with the following trial wave function

$$\Psi^t = \sum_{i=1}^{N} c_i \varphi_i + \phi^-_E - S(E) \phi^+_E.$$  \hspace{1cm} (1)

Here $\varphi_i$ are square-integrable functions (Gaussians in our case) while $\phi^-_E$ and
$\phi^+_E$ are incoming and outgoing Coulomb functions with energy $E$, respectively.

From the $(\delta \Psi^t | \hat{H} - E | \Psi^t) = 0$ projection equation one gets

$$\sum_{j=1}^{N} ( \varphi_i | \hat{H} - E | \varphi_j ) c_j + ( \varphi_i | \hat{H} - E | \phi^-_E ) S(E) = - ( \varphi_i | \phi^-_E ),$$  \hspace{1cm} (2)

$$\sum_{j=1}^{N} ( \phi^+_E | \hat{H} - E | \varphi_j ) c_j + ( \phi^+_E | \hat{H} - E | \phi^-_E ) S(E) = - ( \phi^+_E | \phi^-_E ),$$  \hspace{1cm} (3)

where $i = 1, 2, \ldots, N$. From these equations one can get the $c_i$ coefficients and
the $S$ scattering matrix. For many-body systems one can use basis functions
that are made by matching $\varphi_i$ with the Coulomb functions in the external
regions. This way all many-body matrix elements can be reduced to analytic
forms plus one-dimensional integrals.

The Siegert variational method starts with

$$\Psi^t = \sum_{i=1}^{N} c_i \varphi_i + c_{N+1} \phi^+.$$  \hspace{1cm} (4)

After the variation one gets

$$\sum_{j=1}^{N} ( \varphi_i | \hat{H} - E | \varphi_j ) c_j + ( \varphi_i | \hat{H} - E | \phi^+_E ) c_{N+1} = 0,$$  \hspace{1cm} (5)
This set of linear equations is underdetermined (with $N + 2$ unknowns: $c_1, c_2, \ldots, c_{N+1}, E$). It has solutions, the bound states, only at discrete energies, where the determinant of the left hand side is zero. A matching technique similar to the scattering case can be used to calculate all matrix elements analytically. Using the resulting wave functions the reaction cross sections can be calculated. In order to get rid of the trivial exponential energy dependence of the cross sections, which comes from the Coulomb barrier penetration, we use the astrophysical $S$-factor parametrization

$$S(E) = \sigma(E)E \exp \left[ 2\pi\eta(E) \right], \quad \eta(E) = \frac{\mu Z_1 Z_2 e^2}{k h^2}.$$  

The model and methods described above have been used to study the $^7\text{Be}(p, \gamma)^8\text{B}$ and $^3\text{He}(^3\text{He}, 2p)^4\text{He}$ solar reactions in $^4\text{He} + ^3\text{He} + p$ and $[^3\text{He} + ^3\text{He}, ^4\text{He} + p + p]$ cluster models, respectively.

### 3 $^7\text{Be}(p, \gamma)^8\text{B}$ cross section constrained by $A=7$ and 8 observables

The most uncertain nuclear input parameter in standard solar models is the low-energy $^7\text{Be}(p, \gamma)^8\text{B}$ radiative capture cross section. This reaction produces $^8\text{B}$ in the sun, whose $\beta^+$ decay is the main source of the high-energy solar neutrinos. Many present and future solar neutrino detectors are sensitive mainly or exclusively to the $^8\text{B}$ neutrinos. The predicted $^8\text{B}$ neutrino flux is linearly proportional to $S_{17}$, the $^7\text{Be}(p, \gamma)^8\text{B}$ astrophysical $S$ factor at solar energies ($E_{cm} = 20$ keV). Thus, the value of $S_{17}(20 \text{ keV})$ is a crucial input parameter in solar models.

Currently there is a considerable confusion concerning the value of $S_{17}(0)$. The six direct capture measurements performed to date give $S_{17}(0)$ between 15 eVb and 40 eVb, with a weighted average of $22.2 \pm 2.3$ eVb, while a recent Coulomb dissociation measurement gives $S_{17}(0) = 16.7 \pm 3.2$ eVb. The theoretical predictions for $S_{17}(0)$ also have a huge uncertainty, as the various models give values between 16 eVb and 30 eVb.

The low solar energies mean that the reaction takes place well below the Coulomb barrier. In such cases the radiative capture cross section gets contributions almost exclusively from the external nuclear regions ($r > 6 - 8$ fm). At such distances the scattering- ($^7\text{Be} + p$) and bound state ($^8\text{B}$) wave functions are fully determined, provided the scattering phase shifts and bound state asymptotic normalizations are known. At solar energies the phase shifts
coincide with the (almost zero) hard sphere phase shifts, while the bound state wave function in the external region behaves like $\delta W^+(k r)/r$, where $W^+$ is the Whittaker function and $\delta$ is the asymptotic normalization. So the only unknown parameter that governs the $^7\text{Be}(p,\gamma)^8\text{B}$ reaction at low energies is the $\delta$ value. The $\delta$ normalization depends mainly on the effective $^7\text{Be}-p$ interaction radius. A larger radius results in a lower Coulomb barrier, which leads to a higher tunneling probability into the external region, and hence to a higher cross section. We believe that the best way to constrain the potential radius is to study some key properties of the $A = 7$ and 8 nuclei. The observables that are most sensitive to the interaction radius are “size” type properties, for example, quadrupole moment, radius, Coulomb displacement energy, etc.

We use an eight-body three-cluster model which is variationally converged and virtually complete in the $^4\text{He}+^3\text{He}+p$ cluster model space. We find that the low-energy astrophysical $S$ factor is linearly correlated with the quadrupole moment of $^7\text{Be}$ (Fig. 1). This quantity, $Q_7$, has not been measured yet, but the model itself predicts it to be between $-6$ e fm$^2$ and $-7$ e fm$^2$. In addition to the $Q_7$ dependence, there is a sensitivity of $S_{17}(0)$ on the employed $N-N$ interaction, as shown in Fig. 1. We found that the MN interaction is the most self-consistent in describing the $A = 7$ and 8 nuclei. Thus, our model predicts $S_{17}(0) = 25 - 26.5$ eVb. We mention, however, that the construction and use of other high-quality effective $N-N$ interactions would be desirable in order
to check our findings.

We have also tested how our model reproduces other "size" observables.  The quantity that is most sensitive to the effective \(^7\text{Be} - p\) interaction radius is \(r^2(^8\text{B}) - r^2(^7\text{Be})\). However, a precise experimental determination of this quantity is very difficult. Originally the \(^7\text{Be}\) and \(^8\text{B}\) radii were determined from interaction cross sections by using Glauber-type models with uniform density distributions for the nuclei. Recently a more precise \(^8\text{B}\) radius was extracted from interaction cross section data by taking into account the \(^7\text{Be}+p\) nature of \(^8\text{B}\). The resulting point-nucleon radius is \(r(^8\text{B}) = 2.50 \pm 0.04\) fm, and hence \(r^2(^8\text{B}) - r^2(^7\text{Be}) \approx 0.9\) fm\(^2\). The model still uses the Glauber result for the \(^7\text{Be}\) radius. A few-body \(^4\text{He} + \^3\text{He}\) description of \(^7\text{Be}\) would probably slightly increase \(r(^7\text{Be})\) and consequently \(r(^8\text{B})\).

In Fig. 1 we give the \(^8\text{B}\) radii and \(r^2(^8\text{B}) - r^2(^7\text{Be})\), calculated for the various model spaces, interactions, etc. It appears from Fig. 1(a) that the phenomenological \(r(^8\text{B})\) value would suggest a \(\approx 10\%\) reduction in \(S_{17}(0)\) relative to our MN prediction. However, it is interesting to note that increasing the model space (open circles) reduces the calculated \(r(^8\text{B})\) at a given \(Q_7\). If further model-space extensions resulted in the same behavior, then once again our MN results would be the most self-consistent. Fig. 1(b) shows that \(r^2(^8\text{B}) - r^2(^7\text{Be})\) seems to be already too small for both the MN and MHN interactions. Model-space extensions bring the MN values toward the right direction. The \(^7\text{Li} - ^8\text{B}\) Coulomb displacement energy shows similar behavior to the observables in Fig. 1.

While the zero-energy cross section is sensitive only to the asymptotic parts of the wave functions, with increasing energy the internal wave functions become more and more important. The internal wave functions are sensitive to effects like the exchange of the incoming proton with a proton in \(^7\text{Be}\), the excitation of the \(^7\text{Be}\) core by the incoming proton, \(^7\text{Be}\) deformations, etc. The influence of these off-shell effects on \(S(E)\) was studied in our eight-body model. We took the \(^7\text{Be} - p\) relative motion wave functions coming from the cluster model, and used them as if they came from a potential model. This way the antisymmetrization, which is the biggest off-shell effect, was neglected in the electromagnetic transition matrix. One can see in Fig. 2 that the resulting \(S\) factor (long dashed line) has quite different energy dependence than the full microscopic \(S\) factor (solid line). We also show an \(S\) factor coming from a potential model (short dashed line). This calculation demonstrates that there are strong off-shell effects present in \(^7\text{Be}(p, \gamma)^8\text{B}\), which have to be taken into account for any reliable extrapolation of high-energy measurements.

All existing microscopic calculations for \(^7\text{Be}(p, \gamma)^8\text{B}\) use effective \(N - N\) interactions with Gaussian shape. One can argue that using potentials with

5
Figure 2: Astrophysical $S$ factor for the $^7\text{Be}(p,\gamma)^8\text{B}$ reaction in our eight-body model. The symbols show the various experimental data (see 13 for references). The solid and long-dashed lines are the $E1$ components of the $S$ factors in our model with and without antisymmetrization in the electromagnetic transition matrix, respectively. The short-dashed line is the result of a typical potential model.

The correct Yukawa asymptotics would change $S(0)$. We studied this problem by using the MN interaction with Gaussian shape matched with a Yukawa tail. We found that in the perturbative regime, where such a study makes sense, $S(0)$ is insensitive to the Yukawa tail, although the $A = 7$ and $8$ binding energies change significantly, and the overall strengths of the potentials have to be refitted.

Another interesting question is the effect of further extensions in the model space by including, for example, $^6\text{Li} + p + p$ and other configurations in $^8\text{B}$. As an exploratory investigation, we studied the effects of $^6\text{Li} + N$ on $^7\text{Li}$ and $^7\text{Be}$. An interesting result is that while $^7\text{Li}$ is not affected by the $^6\text{Li} + n$ channel, some $^7\text{Be}$ properties, like the quadrupole moment, is strongly influenced by $^6\text{Li} + p$. We observe a slight change also in the energy dependence of the $^4\text{He}(^3\text{He},\gamma)^7\text{Be} S$ factor. Further studies are in progress.

4 The $^3\text{He}(^3\text{He},2p)\alpha$ reaction

The $^3\text{He}(^3\text{He},2p)\alpha$ reaction competes with the $^7\text{Be}$ producing branch of the solar p-p chain. Thus, it indirectly affects the $^7\text{Be}$ and $^8\text{B}$ neutrino fluxes. There are two interesting problems related to this reaction: i) a possible low-energy resonance in the cross section would suppress the high-energy neutrino fluxes
Figure 3: Astrophysical S factor for the \(^3\)He\(^{(3}\)He,\(2p)\alpha\) reaction. The data points are from 15 and references therein. The solid line is the fitted raw cross section, while the dashed line is the bare cross section, determined by removing the electron screening effect with \(U = 323\) eV screening potential. The short dashed line shows the effect of a hypothetical zero-energy virtual state on the bare cross section. The strength of the virtual state is artificially set to 5 keV.

14; ii) this is the only solar reactions whose cross section has been measured down to solar energies, and the effect of electron screening is still not fully understood15. We studied these problems in a six-body \({\{}^{3}\)He,\(^{3}\)He, \(^{4}\)He, \(p, p\}{\}}\) cluster model16.

If there is a resonance in the \(^3\)He\(^{(3}\)He,\(2p)\alpha\) reaction cross section, then it comes from either \(^3\)He + \(^3\)He or \(^4\)He + \(p + p\). Interestingly, the second case is easier to study despite its three-body nature. We searched for high-lying narrow resonances in \(^4\)He + \(p + p\) using the complex scaling method that can handle the three-body Coulomb asymptotics correctly17,16. We found no such states. The \(^3\)He + \(^3\)He channel is more difficult and more interesting. We mention here only one interesting feature. The \(^3\)He + \(^3\)He system is similar in many respects to the \(n + n\) system, which has a virtual \(0^+\) state with negative energy and negative imaginary wave number. If there is a virtual state present in \(^3\)He + \(^3\)He then it would result in a \(^3\)He\(^{(3}\)He,\(2p)\alpha\) cross section that is singular at the (unphysical) negative \(^3\)He + \(^3\)He pole energy, and has a \(1/E\) energy dependence at low positive energies. We show the effect of such a hypothetical state in Fig. 3. The observed rise in the measured cross section (relative to the bare cross section) is attributed to the effect of electron screening. One can see that a virtual state could mimic a similar behavior. We
have searched for virtual states in $^3$He + $^3$He in a simple cluster model, and found none so far. Further studies in a more realistic model are in progress\textsuperscript{16}.

The understanding of the energy dependence of the cross section is also interesting for the study of electron screening effects. The screening potential, extracted in\textsuperscript{15}, seems to be larger than predicted by theory. We studied the $^3$He($^3$He, 2p)$\alpha$ and the mirror $^3$H($^3$H, 2n)$\alpha$ reactions in large-space cluster models in the continuum discretized coupled channel approximation\textsuperscript{16}. The results are in Fig. 5. We observe a good general agreement with the data in both the absolute normalization and shape. However, a marked disagreement exists at very low energies in $^3$H($^3$H, 2n)$\alpha$ between our result and the very precise Los Alamos data. Further investigation to understand this discrepancy is in progress.

5 Conclusion

We discuss microscopic cluster model descriptions of two solar nuclear reactions, $^7$Be(p, $\gamma$)$^8$B, and $^3$He(3He, 2p)$^4$He. The low-energy reaction cross section of $^7$Be(p, $\gamma$)$^8$B, which determines the high-energy solar neutrino flux, is constrained by $^7$Be and $^8$B observables. Our results show that a small value of the zero-energy cross section is rather unlikely. In $^3$He($^3$He, 2p)$^4$He we study the effects of a possible virtual state on the cross section. Although, we have found no indication for such a state so far, its existence cannot be ruled out yet. We calculated the $^3$He($^3$He, 2p)$^4$He and $^3$H($^3$H, 2n)$^4$He cross sections in a continuum-discretized coupled channel approximation, and found a good general agreement with the data.
Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy. I am grateful to Prof. Karlheinz Langanke for many useful discussions. This work was partly supported by the Danish Research Council and the Theoretical Astrophysics Center during my stay at Aarhus University.

References

2. E. G. Adelberger et al, Rev. Mod. Phys., to be published. Available at http://www.sns.ias.edu/~jnb/Papers/Preprints/Solarfusion/paper.ps
10. A. Csótó and K. Langanke, to be published.
15. C. Arpesella et al, preprint nucl-ex/9707003.