Ultra-efficient epitaxial liftoff solar cells exploiting optical confinement in the wave limit. Final technical report: 19 July 1994--18 July 1998

PDF Version Also Available for Download.

Description

This report describes work performed by the University of California during this subcontract. In this project, the authors pursued the epitaxial liftoff approach, which leaves a very clean substrate after use that can be readily reinserted into an epi-growth reactor. If, as many believe, the epi-growth step can be streamlined and reduced in cost, this would produce the highest possible performance cell, at a cost no higher than other thin-film technologies. They have found, as a number of other groups have, that the epitaxial liftoff process is vulnerable to microscopic cleavage cracks in the lifted-off films. The larger the area ... continued below

Physical Description

vp.

Creation Information

Yablonovitch, E. November 10, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes work performed by the University of California during this subcontract. In this project, the authors pursued the epitaxial liftoff approach, which leaves a very clean substrate after use that can be readily reinserted into an epi-growth reactor. If, as many believe, the epi-growth step can be streamlined and reduced in cost, this would produce the highest possible performance cell, at a cost no higher than other thin-film technologies. They have found, as a number of other groups have, that the epitaxial liftoff process is vulnerable to microscopic cleavage cracks in the lifted-off films. The larger the area of the lifted-off epi-film, the greater the risk of microscopic cleavage cracks. Such cracks block the passage of electricity and are unacceptable in solar cells. This has restricted them to relatively small-area solar cells, which though they performed well, told them very little about scale-up. In the area of lifted-off films, a group in the Netherlands has recently published favorable results using a thin evaporated copper film as a mechanical support layer for the lifted-off GaAs. The authors have tested their approach during this past quarter, and they have not found it to be entirely satisfying. Instead, they suggest continuing to use organic polymer layers for mechanical support. In the past, the support layer has been a thick wax layer, or a thick photo-resist layer. They have now switched to very thin < 1-mm-thick photo-resist layers for support. Such a thin layer has much less give to it, and it allows much less stretching of the lifted-off film.

Physical Description

vp.

Source

  • Other Information: PBD: 10 Nov 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/SR--520-26903
  • Grant Number: AC36-99GO10337
  • DOI: 10.2172/752422 | External Link
  • Office of Scientific & Technical Information Report Number: 752422
  • Archival Resource Key: ark:/67531/metadc707108

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 10, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 31, 2016, 8:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yablonovitch, E. Ultra-efficient epitaxial liftoff solar cells exploiting optical confinement in the wave limit. Final technical report: 19 July 1994--18 July 1998, report, November 10, 1999; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc707108/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.