Microchip device for liquid phase analysis

PDF Version Also Available for Download.

Description

The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and ... continued below

Physical Description

22 pages

Creation Information

Ramsey, j.m. May 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant, TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and open channel electrochromatography (OCEC) with fluidic valving to introduce sample plugs into the separation channel. Other operations have quickly been integrated with the separations and fluidic valving on these microchips. For example, integrated devices with mixers/diluters for precolumn and postcolumn analyte derivatization, deoxyribonucleic acid (DNA) restriction digests, enzyme assays, and polymerase chain reaction (PCR) amplification have been added to the basic design. Integrated mixers that can perform solvent programming for both MEKC and OCEC have also been demonstrated. These examples are simple, yet powerful, demonstrations of the potential for lab-on-a-chip devices. In this report, three key areas for improved performance of these devices are described: on-chip calibration techniques, enhanced separative performance, and enhanced detection capabilities.

Physical Description

22 pages

Source

  • Other Information: PBD: 1 May 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: Y/NSP-305
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/758295 | External Link
  • Office of Scientific & Technical Information Report Number: 758295
  • Archival Resource Key: ark:/67531/metadc707061

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 6, 2016, 1:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ramsey, j.m. Microchip device for liquid phase analysis, report, May 1, 2000; Tennessee. (digital.library.unt.edu/ark:/67531/metadc707061/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.