Ignition analysis of a porous energetic material. 2. Ignition at a closed heated end

PDF Version Also Available for Download.

Description

A continuation of an ignition analysis for porous energetic materials subjected to a constant energy flux is presented. In the first part, the analysis was developed for the case of an open-end, semi-infinite material such that gas flow, generated by thermal expansion, flowed out of the porous solid, thereby removing energy from the system. In the present study, the case of a closed end is considered, and thus the thermally-induced gas flow is now directed into the solid. In these studies, an asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation ... continued below

Physical Description

27 p.

Creation Information

Telegentor, Alexander M.; Margolis, Stephen B. & Williams, Forman A. November 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A continuation of an ignition analysis for porous energetic materials subjected to a constant energy flux is presented. In the first part, the analysis was developed for the case of an open-end, semi-infinite material such that gas flow, generated by thermal expansion, flowed out of the porous solid, thereby removing energy from the system. In the present study, the case of a closed end is considered, and thus the thermally-induced gas flow is now directed into the solid. In these studies, an asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. In both cases it is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas through the solid, and the sign of this correction is shown to depend on the direction of the gas flow. Thus, gas flowing out of an open-end solid was previously shown to give a positive correction to the leading-order time to ignition. Here, however, it is demonstrated that when the flow of gas is directed into the porous solid, the relative transport effects associated with the gas flow serve to preheat the material, resulting in a negative correction and hence a decrease in the ignition-delay time.

Physical Description

27 p.

Notes

OSTI as DE00751012

Medium: P; Size: 27 pages

Source

  • Other Information: PBD: 1 Nov 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND98-8655
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/751012 | External Link
  • Office of Scientific & Technical Information Report Number: 751012
  • Archival Resource Key: ark:/67531/metadc706988

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 6:40 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Telegentor, Alexander M.; Margolis, Stephen B. & Williams, Forman A. Ignition analysis of a porous energetic material. 2. Ignition at a closed heated end, report, November 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc706988/: accessed January 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.