Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A)

PDF Version Also Available for Download.

Description

Exploratory hydrothermal synthesis in the system Cs{sub 2}O-SiO{sub 2}-TiO{sub 2}-H{sub 2}O has produced a new polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A) whose structure was determined using a combination of experimental and theoretical techniques ({sup 29}Si and {sup 133}Cs NMR, X-ray Rietveld refinement, and Density Functional Theory). SNL-A crystallizes in the monoclinic space-group Cc with unit cell parameters: a = 12.998(2) {angstrom}, b = 7.5014(3) {angstrom}, c = 15.156(3) {angstrom}, {eta} = 105.80(3) {degree}. The SNL-A framework consists of silicon tetrahedra and titanium octahedra which are linked in 3-, 5-, 6-, 7- and 8-membered rings in three dimensions. SNL-A is ... continued below

Physical Description

36 p.

Creation Information

NYMAN,MAY D.; BONHOMME,FRANCOIS R.; TETER,DAVID M.; MAXWELL,R.S.; GU,B.X.; WANG,L.M. et al. April 24, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Exploratory hydrothermal synthesis in the system Cs{sub 2}O-SiO{sub 2}-TiO{sub 2}-H{sub 2}O has produced a new polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A) whose structure was determined using a combination of experimental and theoretical techniques ({sup 29}Si and {sup 133}Cs NMR, X-ray Rietveld refinement, and Density Functional Theory). SNL-A crystallizes in the monoclinic space-group Cc with unit cell parameters: a = 12.998(2) {angstrom}, b = 7.5014(3) {angstrom}, c = 15.156(3) {angstrom}, {eta} = 105.80(3) {degree}. The SNL-A framework consists of silicon tetrahedra and titanium octahedra which are linked in 3-, 5-, 6-, 7- and 8-membered rings in three dimensions. SNL-A is distinctive from a previously reported C2/c polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15} by different ring geometries. Similarities and differences between the two structures are discussed. Other characterizations of SNL-A include TGA-DTA, Cs/Si/Ti elemental analyses, and SEM/EDS. Furthermore, the chemical and radiation durability of SNL-A was studied in interest of ceramic waste form applications. These studies show that SNL-A is durable in both radioactive and rigorous chemical environments. Finally, calculated cohesive energies of the two Cs{sub 2}TiSi{sub 6}O{sub 15} polymorphs suggest that the SNL-A phase (synthesized at 200 C) is energetically more favorable than the C2/c polymorph (synthesized at 1,050 C).

Physical Description

36 p.

Notes

INIS; OSTI as DE00754332

Medium: P; Size: 36 pages

Source

  • Journal Name: Journal of Materials Chemistry; Other Information: Submitted to Journal of Materials Chemistry

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-1037J
  • Report No.: 0000035211-000
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 754332
  • Archival Resource Key: ark:/67531/metadc706968

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 24, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 2:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

NYMAN,MAY D.; BONHOMME,FRANCOIS R.; TETER,DAVID M.; MAXWELL,R.S.; GU,B.X.; WANG,L.M. et al. Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A), article, April 24, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc706968/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.