Sn-Li, a new coolant/breeding material for fusion applications.

PDF Version Also Available for Download.

Description

A new breeding material, Sn-Li has been proposed for the APEX and ALPS programs. The key reason for proposing this material is that it has very low vapor pressure. Since both APEX and ALPS are investigating free surface flow for the blanket and divertor, respectively, low vapor pressure is a big advantage. This paper summarizes the results from a preliminary investigation. The early conclusion is that Sn-Li can be used as the coolant/breeding material for the APEX and ALPS applications. It has several attractive features, such as low vapor pressure and high thermal conductivity, but it also has some potential ... continued below

Physical Description

27 p.

Creation Information

Sze, D.-K.; Mattas, R.; Wang, Z.; Cheng, E. T.; Sawan, M.; Zinkle, S. et al. October 11, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A new breeding material, Sn-Li has been proposed for the APEX and ALPS programs. The key reason for proposing this material is that it has very low vapor pressure. Since both APEX and ALPS are investigating free surface flow for the blanket and divertor, respectively, low vapor pressure is a big advantage. This paper summarizes the results from a preliminary investigation. The early conclusion is that Sn-Li can be used as the coolant/breeding material for the APEX and ALPS applications. It has several attractive features, such as low vapor pressure and high thermal conductivity, but it also has some potential issues, such as material compatibility and activation. Further investigation will be required to assess the potential advantages of this material compared to other breeding materials.

Physical Description

27 p.

Notes

INIS; OSTI as DE00750447

Medium: P; Size: 27 pages

Source

  • ICFRM (9th International Conference on Fusion Reactor Materials), Colorado Springs, CO (US), 10/10/1999--10/15/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-98464
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750447
  • Archival Resource Key: ark:/67531/metadc706863

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 11, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 10, 2017, 6:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sze, D.-K.; Mattas, R.; Wang, Z.; Cheng, E. T.; Sawan, M.; Zinkle, S. et al. Sn-Li, a new coolant/breeding material for fusion applications., article, October 11, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc706863/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.