Title: EXCITON AND BIEXCITON SIGNATURES IN THE FEMTOSECOND TRANSIENT ABSORPTION OF PHENYLENE-BASED POLYMERS AND Oligomers

CONF-980547--

Author(s): D. McBranch, V. Klimov, and B. Kraabel

Los Alamos National Laboratory, Chemical Science and Technology Division, Mailstop J567, Los Alamos, NM 87545

Submitted to: International Quantum Electronics Conference (IQEC '98), May 4-7, 1998, San Francisco, CA

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Exciton and biexciton signatures in the femtosecond transient absorption of phenylene-based polymers and oligomers

D. McBranch, V. Klimov, and B. Kraabel

Chemical Science and Technology Division
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

The femtosecond transient-absorption of phenylene-based polymers at low intensities is dominated by singlet excitons. In films, inter-chain excitons are created at high intensities via two-exciton states. In solution, we observe signatures of stable biexcitons.
Exciton and biexciton signatures in fs TA of phenylene polymers  D. McBranch, et al.

The photophysics of conducting polymers from the poly(phenylacetylene) (PPV) family are studied using femtosecond (fs) transient absorption (TA) to address several issues: what are the primary photoexcitations; how do they interact under high excitation; what are the signatures of biexcitons? We have measured solutions and films of the PPV oligomer MEH-DSB, and several soluble PPV derivatives, with similar results. MEH-DSB results are representative of the entire family. The fs differential transmission (DT) spectra of MEH-DSB show: (1) a positive band due to stimulated emission (SE) around 2.4 eV; (2) a photoinduced absorption (PA) band extending from 1.3–2.0 eV. In solutions at low intensities, both features show exponential decay ($\tau \sim 650$ ps), indicating that both originate from singlet excitons. In films, the decay is much faster and strongly nonexponential, with a second PA band at $\sim 1.8$ eV. The 1.4-eV band (PA$_1$) shows pronounced intensity-dependent dynamics, while PA$_2$ exhibits slower pump-independent decay, indicating the creation of two species. The matching PA$_1$ and SE features both arise from singlet excitons. We assign PA$_2$ to interchain excitons (geminate electron-hole pairs on adjacent chains).

The intensity-dependent decay of PA$_1$ shows a slow component ($A_s$, $\tau \sim 5$ ps), and a fast component ($A_f$, $\tau \sim 450$ fs) with magnitude $A_f \propto A_s^2$ (Fig. 1). We infer that $A_f$ originates from intrachain two-exciton states generated within the pump pulsewidth. The decay of the doubly-excited molecules leads to interchain species (PA$_2$), with a complementary 500 fs build-up time. The pump dependence of PA$_1$ and PA$_2$ also show a quadratic correlation. This nonlinear generation is distinct from the intensity-dependence predicted for exciton-exciton annihilation, involving nonlinear decay.

Biexcitons have been predicted in organic $\pi$-conjugated systems, although not documented experimentally. In MEH-DSB films the doubly-excited molecules relax rapidly via charge separation to adjacent chains. These “hot” biexcitons should be stabilized in dilute solutions. Indeed, we find that at pump levels exceeding 1–2 mJ cm$^{-2}$, the solution SE decay deviates from a single exponential ($\sim 650$ ps), showing an additional faster component ($\sim 200$ ps), with $A_f \propto A_s^2$, similar to films (Fig. 2). However, the decay of biexcitons in solutions occurs on a much longer timescale of hundreds of ps.
In solutions the shorter lifetime of doubly-excited excitons is indicative of coherent interactions due to biexciton formation. Another signature is the superlinear increase of the SE at high pump levels, indicating a new species with enhanced oscillator strength. The ratio of the slow and fast SE decay times is around 3.3, an estimate of the enhancement factor for the biexciton oscillator strength. We independently estimate this factor by modeling the SE pump dependence, obtaining \( S = 4 \), using the measured magnitudes of \( A_f \) and \( A_s \).

This work was supported by Los Alamos LDRD funds.
Exciton and biexciton signatures in fs TA of phenylene polymers D. McBranch, et. al. 4

REFERENCES


FIG. 1. Pump-intensity dependent dynamics of PA1 in MEH-DSB film. Inset: quadratic correlation of the fast (A_f) and the slow (A_s) components.

FIG. 2. Pump-intensity dependent dynamics of PA1 in MEH-DSB solution. Inset: quadratic correlation of the fast (A_f) and the slow (A_s) components.
Exciton and biexciton signatures in fs TA of phenylene polymers

D. McBranch, et al.

Fig. 1
Exciton and biexciton signatures in fs TA of phenylene polymers  

D. McBranch, et.al.

Fig. 2