Expression of Cytoskeletal and Matrix Genes Following Exposure to Ionizing Radiation: Dose-rate Effects and Protein Synthesis Requirements

Gayle E. Woloschak,¹²³ Paolo Felcher,¹ and Chin-Mei Chang-Liu¹

¹Center for Mechanistic Biology and Biotechnology
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439-4811
¹Phone (708)252-3312/Fax (708)252-3387

²Department of Pathology
Loyola University Medical Center
2160 South First Avenue
Maywood, Illinois 60153

Key Words: ionizing radiation, cytoskeletal elements, matrix elements, dose-rate effects, protein synthesis inhibitors, gene expression

ABSTRACT

Experiments examined the effects of radiation dose-rate and protein synthesis inhibition expression of cytoskeletal and matrix elements in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for neutrons when comparing expression of α-tubulin and fibronectin genes. Cycloheximide repressed accumulation of α-tubulin-mRNA following exposure to high dose-rate neutrons or γ rays.
Cycloheximide did not affect accumulation of actin mRNA. Cycloheximide abrogated induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to radiation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1. INTRODUCTION

Many recent studies have documented changes in gene expression that accompany exposure to ionizing radiation, with the modulated genes including those encoding cytoskeletal elements [1–3], oncogenes [4,5], cytokines [1,6], protein kinase C [7], and many other cellular proteins [8–10]. It is believed that this early gene modulation (occurring within the first four hours following exposure) is important in modulating later cellular events such as DNA repair, inhibition of DNA synthesis, changes in cell shape, or modulation of later genes [8,11,12].

Past work from our group has demonstrated the modulation of cytoskeletal gene expression following exposure to ionizing radiation [1–3]. From this work, we have documented the similar induction of α-tubulin and γ-actin and repression of β-actin gene expression following exposure to high-linear energy of transfer (LET) JANUS fission-spectrum neutrons and low-LET γ rays or X-rays [1]. Past work had suggested a dose-rate effect and the role of labile proteins in the radiation-induced transcriptional responses in SHE cells [1,2]; experiments were designed to examine the role of dose-rate and protein synthesis inhibition on both the high-LET- and low-LET-induced responses. Cycloheximide has routinely been used as a probe for the role of protein synthesis and labile proteins in cellular responses. Many reports have documented genes induced in response to cycloheximide, including β-actin, c-fos, c-jun, c-myc, histones, and others [13–16]. Genes induced by protein synthesis inhibitors are considered to be regulated intracellularly in a negative manner by a labile protein(s). In this report, we also have included studies of the expression of the matrix-associated protein fibronectin following radiation exposure. We have used doses and time-points shown in previous work to be optimum for studies of gene
modulation. Past work also has shown cycling cells to be more sensitive to the effects of ionizing radiation than resting cells and therefore we have used only cycling cells in this work [2,3].

2. MATERIALS AND METHODS

Cells and Culture Conditions. Cells are normal, diploid fibroblasts that can be neoplastically transformed by ionizing radiation [12,17]. All cell cultures were maintained in Dulbecco’s modified Eagle’s medium, which contains 10% fetal calf serum, 2 mM glutamine, 100 units/mL penicillin, and 100 units/mL streptomycin. Cells were grown to 50% confluence, and 48 h before irradiation they were placed in a medium containing 20% fetal calf serum to maintain them in exponential phase.

Radiation and Cycloheximide Treatments. Cells plated in 100-mm Petri plates containing 10 ml medium were irradiated with 60Co γ rays or fission spectrum neutrons (0.85 MeV) from the JANUS reactor. The actual design of the JANUS reactor and its dosimetry have been reported previously [18]. All irradiations were performed at room temperature on cycling cells (50% confluence); equitoxic doses of neutrons and γ rays were selected on the basis of survival data; the highest doses used in these studies (12 cGy n, 50 cGy γ rays) cause no more than a 10% reduction in cell survival in a 12-day assay [17]. Doses, dose-rates, and time points were chosen on the basis of previous work examining cytoskeletal gene expression in SHE cells [2,3]. In these experiments, reported results are for cells harvested one-hour post completion of the exposure. Control cells were taken to the radiation chamber, but not exposed to radiation. Fifteen minutes before irradiation, 100 μg/mL of cycloheximide (CHX) in
PBS was added to the CHX-treated group of cells, while an equal volume (1 mL) of PBS was added to the controls. Sixty minutes after irradiation, the cells were harvested.

Purification of RNA and Northern Blots. RNA was prepared by isolation in 6 M guanidine isothiocyanate, extraction with phenol, and precipitation from 3 M sodium acetate, pH 6.0 as previously described [1–3]. Poly(A)+ RNA was isolated by oligodeoxythymidylate cellulose chromatography detecting RNA as absorbing at 254 nm was detected. RNA was separated by using formaldehyde agarose gel electrophoresis as described previously [1–3]. Northern blot transfers were performed as described previously [1–3]. In some experiments, the same blot was washed and hybridized successively to several different probes [1–3]. Relative quantitation of the hybridized probe was determined by using a Hirschmann microdensitometer (Frankfort, Germany). All results were averaged from three independent observations.

Although equal amounts by weight, as determined by spectrophotometry, of RNA were loaded into each well of a given gel, we found sufficient variation from one preparation to another to make poly(A)+ analysis essential; mRNA analysis systems measuring the molar concentration of RNA with 3’ poly(A) tails (Molecular Genetics Resources, Tampa, FL) were used for all poly(A)+ RNA preparations, and only RNA samples showing equimolar concentrations of poly(A)+ RNA were loaded onto the same gel.

cDNA Clones. We gratefully acknowledge the gifts of the following clones made available to us: isotype-specific actin cDNA clones (pHFβA-3’ut, pHFγA-3’ut) were obtained from Dr. L. Kedes (Stanford Univ., Palo Alto, CA), non-isotype specific actin cDNA clones from Dr. A. Minty (Pasteur Institute, Paris), α-tubulin from Dr. C.
Veneziale (Mayo Clinic, Rochester, MN), and fibronectin clone from the American Type Culture Collection (Rockville, MD).

3. RESULTS

Dose-rate effects. Previous work had demonstrated that accumulation of some transcripts and total transcription were affected by the dose-rate at which JANUS fission-spectrum neutrons and γ rays were administered [1–3]. To determine whether other cytoskeletal elements (α-tubulin) and the matrix element fibronectin show dose-rate dependent expression, experiments were performed using doses and dose-rates of JANUS neutrons and γ rays similar to those previously used [1,2]. In all experiments cycling cells were used since previous experiments had shown an effect of cell cycle state on specific gene expression [2]. Northern blots were performed and analyzed by microdensitometry; results for both α-tubulin and fibronectin hybridizations are presented in Table 1. These results demonstrate little difference, however, between the effects of high- vs. low-dose-rate neutrons for α-tubulin or fibronectin mRNA accumulation. Induction of α-tubulin mRNA was evident following JANUS neutron exposure. On the other hand, at higher doses, decreased accumulation of fibronectin-mRNA was evident. Due to the different exposure times and kinetics of the response, the dose-rate-dependence of this is unknown.

Effects of Cycloheximide. Experiments were designed to compare the effects of cycloheximide, a protein synthesis inhibitor, on accumulation of β- and γ-actin mRNA following exposure to equitoxic doses of JANUS neutrons and γ rays (12 cGy neutrons vs. 50 cGy γ rays) administered at high or low dose-rates. These conditions of
cycloheximide exposure (100 μg/mL) in SHE cells were shown to be appropriate for
induction of c-fos mRNA (data not shown), a transcript previously shown to be
cycloheximide responsive [13,14]. Table 2 presents the results of microdensitometric
analyses of Northern blots probed with β- or γ-actin to determine relative expression of
these transcripts. From these results, under these conditions none of the treatments
affected it is apparent that accumulation of β-actin mRNA in SHE cells. The moderate
inhibition of γ-actin mRNA accumulation that accompanied γ-ray exposure was
abrogated by cycloheximide treatment, but these differences were slight and may be
peculiarities of this cell system. It should be noted that levels of rRNA were the same
under all experimental conditions (data not shown), thus showing equal
loading/transfer of RNA. (All poly(A)+ RNA preparations have contaminating rRNA; if
this is not present in equal amounts either the RNA loading is not equal or the
poly(A)+ purification was not equally effective.)

Further Northern blot experiments aimed at examining effects on α-tubulin and
fibronectin expression are presented as microdensitometric results in Table 3. These
experiments revealed that while α-tubulin was induced following low dose-rate
neutron exposure, cycloheximide diminished the response. For fibronectin mRNA
expression, moderate induction was observed following exposure to high dose-rate
neutrons or high- or low-dose-rate γ rays. Low dose-rate neutrons had no effect.
However, cycloheximide provided for induction following low dose-rate neutron
exposure but diminished the response following high dose-rate neutrons or high or
low dose-rate γ rays. This suggests that the dose-rate at which neutrons and/or γ
rays are administered may significantly affect the cellular response to the radiation.
4. DISCUSSION

Past work from our group has documented the modulation of cytoskeletal gene expression that accompanies radiation exposure, examining doses and kinetics as well as cell cycle effects [1–3]. We have demonstrated similar modulation of β- and γ-actin and α-tubulin mRNA following exposure to high-LET JANUS neutrons and to low-LET γ rays [1–2]. In the work reported here, we extended previous results by examining dose-rate effects for α-tubulin and fibronectin mRNA expression and by examining the effects of the protein synthesis inhibitor cycloheximide on accumulation of transcripts specific for actins, α-tubulin, and fibronectin.

Studies done in vitro to determine the effects of ionizing radiations on cellular transformation have shown differences in transformation efficiencies between cells exposed to ionizing radiations administered at either high or low dose-rates [19,20]. Recent work by several groups [21–24] has documented a dose-rate effect for neutrons that appears to be dependent upon stage of the cell cycle. In this study, we set out to determine whether effects of low vs. high dose-rate radiations would be evident in the molecular response of the cell to the radiation exposure. Our results demonstrated little effect of neutron dose-rate on accumulation of α-tubulin and fibronectin mRNA. This is consistent with past results in which similar expression patterns of γ-actin mRNA following high- and low-dose-rate neutrons and γ rays were detected [3].

In further studies aimed at determining the role of labile proteins in the molecular response of the cell to ionizing radiations, we examined the effects of cycloheximide on these low and high dose-rate responses. These experiments determined that while cycloheximide had no effect on expression of the actin transcripts, the inhibitor caused repressed accumulation of α-tubulin mRNA following
high dose-rate neutrons or γ rays; a similar response did not occur following low dose-rate exposures. In addition, cycloheximide abrogated the moderate induction of fibronectin mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest either (a) the involvement of some unidentified labile protein in the maintenance of α-tubulin and fibronectin mRNA levels following exposure to ionizing radiations or (b) that radiation induces the synthesis of a protein which is necessary for fibronectin mRNA. In addition, the data suggest that the cellular/molecular response to low and high dose-rate neutrons and γ rays is quite different and involves different intracellular mechanisms. Further experiments will be required to dissect these responses.

It should be noted that under the conditions reported here, we did not observe an induction of β-actin mRNA following exposure to cycloheximide as had been reported by other groups [13,14]. We believe that this is peculiar to SHE cells since we have demonstrated induction of β-actin in other cell types (HeLa) following inhibition of protein synthesis (Libertin, Panozzo, and Woloschak, unpublished observations). However, the fact that c-fos and c-jun (not shown) are induced in this system demonstrates that the cycloheximide concentrations used here are appropriate for the analyses.
LITERATURE CITED

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Gordon Holmblad for help in irradiations, Ms. Kay Bexson for excellent secretarial assistance, and Drs. Carol Giometti, Frank Collart, and Lydia Ling-Indeck for reviewing the manuscript prior to submission. This work supported by the U.S. Department of Energy, Office of Health and Environmental Research, under Contract No. W-31-109-ENG-38.
Table 1. Cycling Cells: α-Tubulin and Fibronectin mRNA Expression Following n₀ Exposure

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
<th>Dose-rate (cGy/min)</th>
<th>Relative α-tubulin mRNA^b</th>
<th>Relative fibronectin mRNA^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.0 (.01)d</td>
<td>1.0 (.06)</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>1.6 (.03)*</td>
<td>1.3 (.01)</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>1.3 (.04)</td>
<td>ND</td>
</tr>
<tr>
<td>24</td>
<td>0.5</td>
<td>1.4 (.05)</td>
<td>1.3 (.06)</td>
</tr>
<tr>
<td>36</td>
<td>0.5</td>
<td>1.3 (.03)</td>
<td>1.2 (.01)</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1.7 (.04)*</td>
<td>1.4 (.03)</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>1.6 (.01)*</td>
<td>1.1 (.04)</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>1.6 (.04)*</td>
<td>0.4 (.13)</td>
</tr>
<tr>
<td>96</td>
<td>12</td>
<td>1.4 (.07)</td>
<td>0.2 (.05)</td>
</tr>
</tbody>
</table>

^aAll mRNA levels based on cells harvested 1 h following completion of the radiation exposure.

^bα-tubulin mRNA in untreated cells was set at 1.0. All samples are expressed relative to that.

^cFibronectin-mRNA levels in untreated cells were set at 1.0. All other RNAs were expressed relative to that.

^dStandard deviations are in parentheses.

^eDenotes significantly different from untreated (0) controls at p < .05.
Table 2. Effects of γ rays/JANUS Neutrons on β-actin/γ-actin Expression in Cycloheximide-treated Cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Relative β-actin mRNA</th>
<th>Relative γ-actin mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>0</td>
<td>1.0 (.06)</td>
<td>1.0 (.01)</td>
</tr>
<tr>
<td>JANUS n.o. 0.5 cGy/min</td>
<td>12 cGy</td>
<td>0.8 (.15)</td>
<td>0.7 (.01)</td>
</tr>
<tr>
<td>JANUS n.o. 12 cGy/min</td>
<td>12 cGy</td>
<td>1.2 (.06)</td>
<td>0.8 (.01)</td>
</tr>
<tr>
<td>γ rays, 1 cGy/min</td>
<td>50 cGy</td>
<td>1.1 (.10)</td>
<td>0.6 (.03)*</td>
</tr>
<tr>
<td>γ rays, 14 cGy/min</td>
<td>50 cGy</td>
<td>1.0 (.17)</td>
<td>0.7 (.01)</td>
</tr>
<tr>
<td>CHX d</td>
<td>0</td>
<td>0.9 (.12)</td>
<td>0.6 (.03)*</td>
</tr>
<tr>
<td>CHX, JANUS n.o. 0.5 cGy/min</td>
<td>12 cGy</td>
<td>1.3 (.06)</td>
<td>1.1 (.03)</td>
</tr>
<tr>
<td>CHX, JANUS n.o. 12 cGy/min</td>
<td>12 cGy</td>
<td>1.2 (.05)</td>
<td>0.6 (.01)*</td>
</tr>
<tr>
<td>CHX, γ rays, 1 cGy/min</td>
<td>50 cGy</td>
<td>0.9 (.09)</td>
<td>1.3 (.03)</td>
</tr>
<tr>
<td>CHX, γ rays, 14 cGy/min</td>
<td>50 cGy</td>
<td>1.0 (.14)</td>
<td>1.3 (.01)</td>
</tr>
</tbody>
</table>

*aCycling SHE cells were exposed to doses and dose-rates of γ rays as shown above. 1 h post-exposure RNA was harvested and analyzed by Northern blots.

*bRelative expression of β-actin in untreated cells was set at 1.0. All other β-actin mRNA levels are expressed relative to that. Values in parentheses are standard deviations.

*cRelative expression of γ-actin in untreated cells was set at 1.0. All other γ-actin mRNA levels are expressed relative to that. Values in parentheses are standard deviations.

*dCycloheximide (100 μg/mL) was given 10 min prior to irradiation, and cells were harvested 1 h after completion of the radiation exposure.

*Denotes significantly different from untreated (0) controls at p < .05.
Table 3. Effects of γ rays/JANUS neutrons on α-tubulin and fibronectin mRNA in Expression Cycloheximide-treated Cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Relative α-tubulin mRNA</th>
<th>Relative fibronectin mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>0 cGy</td>
<td>1.0 (0.06)*</td>
<td>1.0 (0.13)</td>
</tr>
<tr>
<td>JANUS n₀, 0.5 cGy/min</td>
<td>12 cGy</td>
<td>1.1 (0.06)</td>
<td>1.3 (0.02)</td>
</tr>
<tr>
<td>JANUS n₀, 12 cGy/min</td>
<td>12 cGy</td>
<td>1.9 (0.04)*</td>
<td>1.5 (0.04)*</td>
</tr>
<tr>
<td>γ rays, 1 cGy/min</td>
<td>50 cGy</td>
<td>1.0 (0.06)</td>
<td>1.7 (0.02)*</td>
</tr>
<tr>
<td>γ rays, 14 cGy/min</td>
<td>50 cGy</td>
<td>1.0 (0.04)</td>
<td>1.5 (0.04)*</td>
</tr>
<tr>
<td>CHX d</td>
<td>0 cGy</td>
<td>0.7 (0.05)</td>
<td>1.5 (0.05)*</td>
</tr>
<tr>
<td>CHX, JANUS n₀, 0.5 cGy/min</td>
<td>12 cGy</td>
<td>0.9 (0.04)</td>
<td>1.9 (0.05)*</td>
</tr>
<tr>
<td>CHX, JANUS n₀, 12 cGy/min</td>
<td>12 cGy</td>
<td>0.4 (0.1)*</td>
<td>1.1 (0.01)</td>
</tr>
<tr>
<td>CHX, γ rays, 1 cGy/min</td>
<td>50 cGy</td>
<td>0.9 (0.03)</td>
<td>1.1 (0.14)</td>
</tr>
<tr>
<td>CHX, γ rays, 14 cGy/min</td>
<td>50 cGy</td>
<td>0.5 (0.07)*</td>
<td>0.9 (0.03)</td>
</tr>
</tbody>
</table>

*Cycling SHE cells were exposed to doses and dose-rates of γ rays as shown above. 1 h post-exposure RNA was harvested and analyzed by Northern blots.

Relative expression of α-tubulin in untreated cells was set at 1.0. All other α-tubulin levels are expressed relative to that. Values in parentheses are standard deviations.

Relative expression of fibronectin mRNA in untreated cells was set at 1.0. All other fibronectin mRNA levels are expressed relative to that.

Cycloheximide (100 µg/mL) was given 10 min prior to irradiation, and cells were harvested 1 h after completion of the radiation exposure.

Standard deviations are in parentheses.

*Denotes significantly different from untreated (0) controls at p < 0.05.