Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells

PDF Version Also Available for Download.

Description

Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order ... continued below

Creation Information

Botchkarev, A.; Chow, W.W.; Jiang, H.X.; Lin, J.Y.; Mair, R.; Morkoc, H. et al. October 9, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order of magnitude from 0.110 to IO. The carrier density is estimated to be about N=1012/cm2 (at UC= 0.1 Io) to 1013/cm2 (at 1=== l.). We plotted the PL spectra for four representative excitation fimction of injected carrier density N (open squares). The ratio starts at a value of about 18% for N=1012/cm2 (& = O. lb), and reaches a value over 64 `XO for N=1013/cm2 (& = regions is a loss to optical gain. The carrier density is ve~ high in our experiment and an electron-hole plasma (EHP) state is expected. Because the carrier transfer process plasma temperature. The laser pump energy is about 4.3 eV, which is far above the energy band gap of the sample studied here. This may result in a hot carrier population carrier densities and plasma temperatures. Using a phenomenological expression based The calculated ratio of carriers in the unconfked to the confined states (Ima~ kf) as a finction of carrier density at different temperatures are plotted in Fig. 3 (solid lines). The figure shows that the experiment results can only be explained by plasma heating of the injected carriers at high & ( TP > TJ. The transparency carrier densities for GaN/AIXGal.XN MQW structures with well thickness from 2 to 4 nm were calculated to be around 1x 1012/cm2 [10]. It is thus obvious from Fig. 3 that under high carrier injection density above the transparency density, the plasma temperature, TP, is no longer a constant. It rapidly increases with injected carrier density. Our results indicate that above the transparency carrier density, the carrier temperature may be a few due to the carrier plasma heating effect. Plasma heating makes it more difficult to obtain high quantum efficiency in the on improving the quantum efficiency of fiture GaN/AlxGalJ MQW laser structures, form an EHP and (b) plasma heating of the injected carriers strongly affects the carrier above the transparency density, the carrier plasma temperature may be a few hundred carrier density. The importance of plasma heating has both theoretical and experimental implications. It complicates the modeling of III-N lasers because plasma temperature The ratio of the PL intensities of the 25 ~ GaN/AIO.w&.mN MQW sample from fimction of injected carrier density. The open squares are experimental data and

Source

  • Journal Name: Applied Physics Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00000724
  • Report No.: SAND98-2258J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 724
  • Archival Resource Key: ark:/67531/metadc706696

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 9, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Dec. 6, 2016, 4:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Botchkarev, A.; Chow, W.W.; Jiang, H.X.; Lin, J.Y.; Mair, R.; Morkoc, H. et al. Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells, article, October 9, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc706696/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.