Irradiation-assisted stress corrosion cracking of model austenitic stainless steel.

PDF Version Also Available for Download.

Description

Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 and ... continued below

Physical Description

12 p.

Creation Information

Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J. & Karlsen, T. M. October 26, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Slow-strain-rate tensile (SSRT) tests were conducted on model austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup 2} and {approx} 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. At {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, a high-purity heat of Type 316L SS that contains a very low concentration of Si exhibited the highest susceptibility to IGSCC. In unirradiated state, Types 304 and 304L SS did not exhibit a systematic effect of Si content on alloy strength. However, at {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2}, yield and maximum strengths decreased significantly as Si content was increased to >0.9 wt.%. Among alloys that contain low concentrations of C and N, ductility and resistance to TGSCC and IGSCC were significantly greater for alloys with >0.9 wt.% Si than for alloys with <0.47 wt.% Si. Initial data at {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} were also consistent with the beneficial effect of high Si content. This indicates that to delay onset of and reduce susceptibility to irradiation-assisted stress corrosion cracking (IASCC), at least at low fluence levels, it is helpful to ensure a certain minimum concentration of Si. High concentrations of Cr were also beneficial; alloys that contain <15.5 wt.% Cr exhibited greater susceptibility to IASCC than alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.

Physical Description

12 p.

Notes

OSTI as DE00750443

Medium: P; Size: 12 pages

Source

  • 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Newport Beach, CA (US), 08/01/1999--08/05/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-98090
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750443
  • Archival Resource Key: ark:/67531/metadc706688

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 26, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 6, 2017, 8:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 7
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J. & Karlsen, T. M. Irradiation-assisted stress corrosion cracking of model austenitic stainless steel., article, October 26, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc706688/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.