Standard Data Report

1997 Annual Report on Waste Generation and Waste Minimization Progress as Required by DOE Order 5400.1

Los Alamos National Laboratory
State: NM
Operations Office: AL

Prepared for:
DOE

Prepared by:
Dianne Wilburn, LANL
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Report Date: 04/07/98
Signature Page

Mike Sweitzer, Physical Scientist
4/09/98
Date

James Nunz, Waste Management/Minimization
U.S. Department of Energy-Los Alamos Area Office
4/24/98
Date

Thomas E. Baca, Program Director
Environmental Management
Los Alamos National Laboratory
4/15/98
Date

Thomas Starke, Program Manager
Environmental Stewardship Program
Los Alamos National Laboratory
April 13, 1998
Date
General Site Information

Point of Contact (DOE)

Name: James Nunz
Dept: DOE-Los Alamos Area Office
Phone: (505)667-0573
Fax: (505)665-4504

Point of Contact (Contractor)

Name: Thomas P. Starke
Dept: LANL-Environmental Stewardship
Phone: (505)667-6639
Fax: (505)665-8118

Mailing Address:
P.O. Box 1663, MS J591
Los Alamos, NM 87545
Los Alamos, NM 87545

Internet Address:
TPS@LANL.GOV, DWWILBURN@LANL.GOV

CSOs:

- Lead CSO - DP
- Additional CSOs - EE, EM, ER, FE, NE, RW

General Site Mission

Los Alamos National Laboratory's original mission to design, develop, and test nuclear weapons has broadened and evolved as technologies, national priorities, and the world community have changed. Today the vision of the Los Alamos National Laboratory is that of a national laboratory in which science serves society to enhance global security, preserve the earth, and improve the quality of life through innovations in science and technology and through the management of its business and operations at a world class level.

The Laboratory's central mission of Reducing the Global Nuclear Danger supports core competencies that enable the Laboratory to contribute to defense, civilian, and industrial needs. In turn, the intellectual challenges of civilian and industrial problems strengthen and help support the core competencies required for the national security mission. Our ability to do great science underpins all of our applied work. There are five core competencies which support this mission: 1) Stockpile Stewardship ensures that the U.S. has safe, secure and reliable nuclear weapons; 2) Stockpile Management provides capabilities ranging from dismantling to remanufacturing of the enduring stockpile; 3) Nuclear Materials Management ensures the availability and safe disposition of plutonium, highly enriched uranium, and tritium; 4) Nonproliferation and Counterproliferation...
help to deter, detect, and respond to the proliferation of weapons of mass destruction; and
5) Environmental Stewardship provides for the remediation and reduction of wastes from the nuclear weapons complex.
Site Generation Data

Routine * vs. Cleanup/Stabilization ** Waste

<table>
<thead>
<tr>
<th>Waste</th>
<th>Routine</th>
<th>Cleanup/Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste (L)</td>
<td>0 m3</td>
<td>0 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>High Level Waste (S)</td>
<td>0 m3</td>
<td>0 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste (TRU) (L)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste (TRU) (S)</td>
<td>87.39 m3</td>
<td>2.29 m3</td>
<td>89.68 m3</td>
</tr>
<tr>
<td>Mixed-TRU (L)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed-TRU (S)</td>
<td>6.45 m3</td>
<td>6.03 m3</td>
<td>12.48 m3</td>
</tr>
<tr>
<td>Low-Level Waste (LLW) (L)</td>
<td>13.89 m3</td>
<td>46.81 m3</td>
<td>60.70 m3</td>
</tr>
<tr>
<td>Low-Level Waste (LLW) (S)</td>
<td>517.61 m3</td>
<td>2266.98 m3</td>
<td>2784.59 m3</td>
</tr>
<tr>
<td>Mixed-LLW (L)</td>
<td>1.12 m3</td>
<td>15.72 m3</td>
<td>16.84 m3</td>
</tr>
<tr>
<td>Mixed-LLW (S)</td>
<td>4.68 m3</td>
<td>34.16 m3</td>
<td>38.84 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>38.65 mt</td>
<td>181.67 mt</td>
<td>220.32 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td>83.43 mt</td>
<td>2785.42 mt</td>
<td>2868.85 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>0.00 mt</td>
<td>290.11 mt</td>
<td>290.11 mt</td>
</tr>
<tr>
<td>Mixed-TSCA</td>
<td>0.00 mt</td>
<td>98.97 mt</td>
<td>98.97 mt</td>
</tr>
<tr>
<td>Sanitary</td>
<td>2239.16 mt</td>
<td>0.00 mt</td>
<td>2239.16 mt</td>
</tr>
</tbody>
</table>
Total waste generated at the site during calendar year 1997, which is a sum of all wastes generated regardless of source or activity

* Routine waste is defined as waste produced from any type of production operation, analytical and/or R&D laboratory operations; T/S/D operations, "work for others", or any other periodic and recurring work that is considered on-going in nature.

** Cleanup/Stabilization waste is defined as one-time operations waste: Wastes produced from environmental restoration program activities, including primary and secondary wastes associated with retrieval and remediation operations; "legacy wastes"; and D&D/Transition operations.
Site-Wide Recycling Activities

Paper Products
- Office and Mixed Paper: 248.15 mt
- Corrugated cardboard: 40.19 mt
- Phone books: 0.00 mt
- Newspapers/Magazines: 0.16 mt
- Aluminum cans: 0.00 mt
- Glass: 0.00 mt
- Plastic: 0.00 mt
- Styrofoam: 0.00 mt

Scrap metals
- Stainless steel: 6.46 mt
- Copper: 0.54 mt
- Iron: 42.54 mt
- Aluminum: 5.15 mt
- Lead: 156.26 mt
- Zinc: 0.00 mt
- Other: (see discussion below) 3033.64 mt

Precious metals
- Silver: 0.00 mt
- Gold: 0.00 mt
- Platinum: 0.00 mt
- Toner cartridges: 0.00 mt
- Batteries: 0.00 mt
- Engine oils: 28.13 mt
- Tires: 0.55 mt
- Food waste: 0.00 mt
- Concrete: 0.00 mt
- Wood (chips, compost): 118.17 mt
- Other: (see discussion below) 8245.56 mt

Percentage of Sanitary Waste Recycled:
\[
\frac{\text{quantity recycled}}{\text{waste disposed + waste recycled}} = 84.19 \%
\]

Other materials recycled include: fluorescent bulbs, chemicals, construction debris, excess equipment, office furniture, rubble, waste containers, and water.
CSO Specific Information

CSO: DP Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup</th>
<th>Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L) 0.00 m3</td>
<td>0.00 m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 83.83 m3</td>
<td>2.08 m3</td>
<td></td>
<td>85.91 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 6.45 m3</td>
<td>1.87 m3</td>
<td></td>
<td>8.32 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L) 2.72 m3</td>
<td>14.37 m3</td>
<td></td>
<td>17.09 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 302.69 m3</td>
<td>879.54 m3</td>
<td></td>
<td>1182.23 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L) 1.09 m3</td>
<td>7.86 m3</td>
<td></td>
<td>8.95 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 4.68 m3</td>
<td>26.96 m3</td>
<td></td>
<td>31.64 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>37.96 mt10.05 mt</td>
<td>48.01 mt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Regulated</td>
<td>67.64 mt2759.63 mt</td>
<td>2827.27 mt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>0.00 mt271.89 mt</td>
<td>271.89 mt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td>0.00 mt98.92 mt</td>
<td>98.92 mt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: EE Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td></td>
<td>0.15 mt</td>
<td>0.25 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td></td>
<td>0.04 mt</td>
<td>0.04 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td></td>
<td>0.00 mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td></td>
<td>0.00 mt</td>
<td>0.00 mt</td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: EM Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L) * m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L) 0.00 m3</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 3.56 m3</td>
<td>0.21 m3</td>
<td>3.77 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L) 0.00 m3</td>
<td>0.00 m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 0.00 m3</td>
<td>4.16 m3</td>
<td>4.16 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L) 11.17 m3</td>
<td>32.44 m3</td>
<td>43.61 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 200.28 m3</td>
<td>1387.44 m3</td>
<td>1587.72 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L) 0.03 m3</td>
<td>7.86 m3</td>
<td>7.89 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 0.00 m3</td>
<td>7.20 m3</td>
<td>7.20 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>0.16 mt</td>
<td>171.51 mt</td>
<td>171.67 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td>13.78 mt</td>
<td>25.56 mt</td>
<td>39.34 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>* mt</td>
<td>18.22 mt</td>
<td>18.22 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td>* mt</td>
<td>0.05 mt</td>
<td>0.05 mt</td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: ER Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup Stability</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>3.21 m3</td>
<td>3.21 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>0.12 mt</td>
<td>0.01 mt</td>
<td>0.13 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td>1.97 mt</td>
<td>0.23 mt</td>
<td>2.20 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: FE Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: NE Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup</th>
<th>Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) 11.43 m3</td>
<td>* m3</td>
<td></td>
<td>11.43 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S) * m3</td>
<td>* m3</td>
<td></td>
<td>0.00 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td>0.26 mt</td>
<td>* mt</td>
<td></td>
<td>0.26 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td></td>
<td>0.00 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td>* mt</td>
<td>* mt</td>
<td></td>
<td>0.00 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td>* mt</td>
<td>* mt</td>
<td></td>
<td>0.00 mt</td>
</tr>
</tbody>
</table>
CSO Specific Information

CSO: RW Waste Generation.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Routine</th>
<th>Cleanup</th>
<th>Stabilization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Transuranic Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed Transuranic</td>
<td>(L)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Low Level Waste</td>
<td>(L)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>Mixed-LLW</td>
<td>(L)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td></td>
<td>(S)</td>
<td>* m3</td>
<td>* m3</td>
<td>0.00 m3</td>
</tr>
<tr>
<td>RCRA Regulated</td>
<td></td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>State Regulated</td>
<td></td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>TSCA Regulated</td>
<td></td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
<tr>
<td>Mixed TSCA</td>
<td></td>
<td>* mt</td>
<td>* mt</td>
<td>0.00 mt</td>
</tr>
</tbody>
</table>
Explanations for changes in reported waste generation amounts for 1996 vs. 1997

Waste type: Routine - Transuranic Waste
CSO: EM
Reported in 1996: 1.90 m³
Reported in 1997: 3.56 m³

Explanation for the significant waste generation change:
This increase can be attributed to an increase in work by Chemical Science and Technology Division with processes which produce TRU waste.

Waste type: Cleanup/Stabilization - Transuranic Waste
CSO: DP
Reported in 1996: 12.59 m³
Reported in 1997: 2.08 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Transuranic Waste
CSO: EM
Reported in 1996: 4.16 m³
Reported in 1997: 0.21 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Routine - Mixed Transuranic Waste
CSO: DP
Reported in 1996: 4.37 m³
Reported in 1997: 6.45 m³

Explanation for the significant waste generation change:
Routine MTRU generation increase in FY97 is due to increased waste generating processes at the Laboratory.
Waste Minimization Reporting System (WMINRS)

Waste type: Cleanup/Stabilization - Mixed Transuranic Waste
CSO: DP
Reported in 1996: 23.20 m³
Reported in 1997: 1.87 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Mixed Transuranic Waste
CSO: EM
Reported in 1996: 17.43 m³
Reported in 1997: 4.16 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Routine - Low-Level Waste
CSO: EM
Reported in 1996: 155.02 m³
Reported in 1997: 211.45 m³

Explanation for the significant waste generation change:
This can be attributed to an increase in routine work associated with clean out type activities at the Rad Liquid Waste Facility and Solid Waste Operations.

Waste type: Routine - Low-Level Waste
CSO: ER
Reported in 1996: 10.03 m³
Reported in 1997: 3.21 m³

Explanation for the significant waste generation change:
ER Routine LLW generation constitutes less than 1% of the total Routine LLW generation. Therefore, for overall generation, this is not a significant fluctuation.
Waste type: Cleanup/Stabilization - Low-Level Waste
CSO: DP
Reported in 1996: 743.09 m³
Reported in 1997: 893.91 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Low-Level Waste
CSO: EM
Reported in 1996: 3399.47 m³
Reported in 1997: 1419.88 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Low-Level Waste
CSO: ER
Reported in 1996: 0.02 m³
Reported in 1997: 0.00 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Low-Level Waste
CSO: NE
Reported in 1996: 15.44 m³
Reported in 1997: 0.00 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.
Waste type: Routine - Mixed Low-Level Waste
CSO: EM
Reported in 1996: 0.88 m³
Reported in 1997: 0.03 m³

Explanation for the significant waste generation change:
EM Routine MLLW generation constitutes less than 1% of the total Routine MLLW generation. Therefore, for overall generation, this is not a significant fluctuation.

Waste type: Cleanup/Stabilization - Mixed Low-Level Waste
CSO: DP
Reported in 1996: 26.45 m³
Reported in 1997: 34.82 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization projects produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Mixed Low-Level Waste
CSO: EM
Reported in 1996: 19.12 m³
Reported in 1997: 15.06 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - Mixed Low-Level Waste
CSO: NE
Reported in 1996: 12.84 m³
Reported in 1997: 0.00 m³

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.
Waste type: Routine - RCRA Waste
CSO: DP
Reported in 1996: 25.37 mt
Reported in 1997: 37.96 mt

Explanation for the significant waste generation change:
During CY 1996, Fluorescent Bulbs were tracked as Non Routine Waste. In CY 1997, they were tracked as Routine waste for a total of 12.28 metric tons of Routine RCRA waste.

Waste type: Routine - RCRA Waste
CSO: EE
Reported in 1996: 0.11 mt
Reported in 1997: 0.15 mt

Explanation for the significant waste generation change:
EE Routine RCRA generation constitutes less than 1% of the total Routine RCRA generation. Therefore, for overall generation, this is not a significant fluctuation.

Waste type: Routine - RCRA Waste
CSO: EM
Reported in 1996: 0.61 mt
Reported in 1997: 0.16 mt

Explanation for the significant waste generation change:
EM Routine RCRA generation constitutes less than 1% of the total Routine RCRA generation. Therefore, for overall generation, this is not a significant fluctuation.

Waste type: Routine - RCRA Waste
CSO: NE
Reported in 1996: 0.40 mt
Reported in 1997: 0.26 mt

Explanation for the significant waste generation change:
NE Routine RCRA generation contributes less than 1% to total Laboratory Routine RCRA generation. Therefore, for overall generation, this is not a significant fluctuation.
Waste type: Cleanup/Stabilization - RCRA Waste
CSO: DP
Reported in 1996: 18.95 mt
Reported in 1997: 10.05 mt

Explanation for the significant waste generation change:
During CY 1996, Fluorescent Bulbs were tracked as Non Routine Waste for a total of 13.16 metric tons. Also, various Cleanup/Stabilization projects produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - RCRA Waste
CSO: EE
Reported in 1996: 2.26 mt
Reported in 1997: 0.10 mt

Explanation for the significant waste generation change:
EE Cleanup/Stabilization RCRA generation constitutes less than 1% of the total Cleanup/Stabilization RCRA generation. Therefore, for overall generation, this is not a significant fluctuation.

Waste type: Cleanup/Stabilization - RCRA Waste
CSO: EM
Reported in 1996: 872.22 mt
Reported in 1997: 171.51 mt

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Waste type: Cleanup/Stabilization - RCRA Waste
CSO: ER
Reported in 1996: 0.00 mt
Reported in 1997: 0.01 mt

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major similar projects ramp up and finish.
Waste type: Routine - State Regulated Waste
CSO: DP
Reported in 1996: 52.17 mt
Reported in 1997: 67.64 mt

Explanation for the significant waste generation change:
During December 1997, the laboratory disposed of approximately 11.28 metric tons of graphite powder as Routine State Waste. The laboratory is currently working with regulators to determine if the graphite is State waste.

Waste type: Routine - State Regulated Waste
CSO: EE
Reported in 1996: 0.11 mt
Reported in 1997: 0.04 mt

Explanation for the significant waste generation change:
EE Routine State generation constitutes less than 1% of the total Routine State generation. Therefore, for overall generation, this is not a significant fluctuation.

Waste type: Routine - State Regulated Waste
CSO: EM
Reported in 1996: 8.45 mt
Reported in 1997: 13.78 mt

Explanation for the significant waste generation change:
Data is being reviewed to determine the cause of this increase. Data should be available by 4/30/98.

Waste type: Routine - State Regulated Waste
CSO: ER
Reported in 1996: 3.35 mt
Reported in 1997: 1.97 mt

Explanation for the significant waste generation change:
Routine State generation of waste by ER represents less than 3% of the total generated by the Laboratory. Therefore, for overall generation, this is not a significant fluctuation.
Waste type: Cleanup/Stabilization - State Regulated Waste
CSO: DP
Reported in 1996: 24.80 mt
Reported in 1997: 2759.63 mt

Explanation for the significant waste generation change:
2,660.36 metric tons of water was removed from a Lagoon at the Fenton Hill Site. This water was reused as dust suppressant at a Hazardous Waste Landfill in Arizona. An additional 14.51 metric tons was generated from miscellaneous equipment used in beryllium processing which was contaminated with Beryllium dust. Also, there were 32.66 metric tons generated from processed tuff which was contaminated with hydraulic oil from a spill.

Waste type: Cleanup/Stabilization - State Regulated Waste
CSO: EM
Reported in 1996: 2588.23 mt
Reported in 1997: 25.56 mt

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as projects ramp up and finish.

Waste type: Cleanup/Stabilization - State Regulated Waste
CSO: ER
Reported in 1996: 0.00 mt
Reported in 1997: 0.23 mt

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as projects ramp up and finish.

Waste type: Cleanup/Stabilization - TSCA Waste
CSO: DP
Reported in 1996: 103.09 mt
Reported in 1997: 271.89 mt

Explanation for the significant waste generation change:
In CY 1997, the laboratory disposed of 137 metric tons of sanitary sewage sludge contaminated with Polychlorinated biphenyls.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CSO: EM</td>
<td>CSO: DP</td>
<td>CSO: EM</td>
<td></td>
</tr>
<tr>
<td>Reported in 1997: 18.22 mt</td>
<td>Reported in 1997: 98.92 mt</td>
<td>Reported in 1997: 0.05 mt</td>
<td>Reported in 1997: 0.00 mt</td>
</tr>
</tbody>
</table>

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Explanation for the significant waste generation change:
Various Cleanup/Stabilization activities produce significant year-to-year fluctuations as major projects ramp up and finish.

Explanation for the significant waste generation change:
During Calendar Year 1997, all sanitary cleanup/stabilization waste was recycled, therefore, this material is not counted as waste generation.
Appendix (optional)